Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064202    DOI: 10.1088/1674-1056/abea8c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High speed ghost imaging based on a heuristic algorithm and deep learning

Yi-Yi Huang(黄祎祎)1,2, Chen Ou-Yang(欧阳琛)1,2, Ke Fang(方可)1,2, Yu-Feng Dong(董玉峰)1, Jie Zhang(张杰)1,3, Li-Ming Chen(陈黎明)3,4,†, and Ling-An Wu(吴令安)1,2,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 IFSA Collaborative Innovation Center and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
4 College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
Abstract  We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets, based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.
Keywords:  high speed computational ghost imaging      heuristic algorithm      deep learning  
Received:  17 December 2020      Revised:  10 February 2021      Accepted manuscript online:  01 March 2021
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0403301, 2017YFB0503301, and 2018YFB0504302), the National Natural Science Foundation of China (Grant Nos. 11991073, 61975229, and Y8JC011L51), the Key Program of CAS (Grant No. XDB17030500), the Civil Space Project (Grant No. D040301), and the Science Challenge Project (Grant No. TZ2018005).
Corresponding Authors:  Li-Ming Chen, Ling-An Wu     E-mail:  lmchen@sjtu.edu.cn;wula@iphy.ac.cn

Cite this article: 

Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安) High speed ghost imaging based on a heuristic algorithm and deep learning 2021 Chin. Phys. B 30 064202

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[2] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[3] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[4] Schori A and Shwartz S 2017 Opt. Express 25 14822
[5] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[6] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P and Ratner D 2018 Phys. Rev. Lett. 121 114801
[7] Khakimov R I, Henson B M, Shin D K, Hodgman S S, dall R G, Baldwin K G H and Truscott A G 2016 Nature 540 100
[8] He Y H, Huang Y Y, Zeng Z R, Li Y F, Tan J H, Chen L M, Wu L A, Li M F, Quan B G, Wang S L and Liang T J 2021 Science Bulletin 66 133
[9] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[10] Shapiro J H 2008 Phys. Rev. A 78 061802
[11] Morris P A, Aspden R S, Bell J E C et al. 2015 Nat. Commun. 6 5913
[12] Janassek P, Blumenstein S and Elsäßer W 2018 Phys. Rev. Applied 9 2
[13] Tanha M, Ahmadi-Kandjani S and Kheradmand R 2013 Physica Scripta T157 014059
[14] Tanha M, Kheradmand R and Ahmadi-Kandjani S 2012 Appl. Phys. Lett. 101 101108
[15] Erkmen B I 2012 J. Opt. Soc. Am. A 29 782
[16] Li E R, Bo Z W, Chen M L, Gong W L and Han S S 2014 Appl. Phys. Lett. 104 251120
[17] Erkmen B I and Shapiro J H 2009 Phys. Rev. A 79 023833
[18] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photon. 13 13
[19] Wang Y, Liu Y, Suo J, Situ G, Qiao C and Dai Q 2017 Sci. Rep. 7 45325
[20] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[21] Pratt W K, Kane J and Andrews H C 1969 Proc. IEEE 57 58
[22] Sun M J, Meng L T, Edgar M P, Padgett M J and Radwell N 2017 Sci. Rep. 7 3464
[23] Higham C F, Murray-Smith R, Padgett M J and Edgar M P 2018 Sci. Rep. 8 2369
[24] Yu W K 2019 Sensors 19 4122
[25] Yu W K and Liu Y M 2019 Sensors 19 5135
[26] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
[27] Wang W, Hu X M, Liu J D, Zhang S Z, Suo J L and Situ G H 2015 Opt. Express 23 28416
[28] Wang L and Zhao S M 2020 Chin. Phys. B 29 024204
[29] Wang W, Wang Y P, Li J, Yang X and Wu Y 2014 Opt. Lett. 39 5150
[30] Kamilov U S, Papadopoulos I N, Shoreh M H, Goy A, Vonesch C, Unser M and Psaltis D 2015 Optica 2 517
[31] Li Y X, Yu W K, Leng J and Wang S F 2019 Opt. Express 27 35166
[32] Lyu M, Wang W, Wang H, Wang H C, Li G W, Ni Chen and Situ G H 2017 Sci. Rep. 7 17865
[33] He Y C, Wang G, Dong G X, Zhu S T, Chen H, Zhang A X and Xu Z 2018 Sci. Rep. 8 6469
[34] Wang F, Wang H, Wang H C, Li G W and Situ G H 2019 Opt. Express 27 25560
[35] Wu H, Wang R Z, Zhao G P, Xiao H P, Liang J, Wang D D, Tian X B, Cheng L L and Zhang X M 2020 Optics and Lasers in Engineering 134 106183
[36] Zhang Z B, Li X, Zheng S J, Yao M H, Zheng G A and Zhong J G 2020 Opt. Express 28 13269
[37] Gao Z Q, Cheng X M, Chen K, Wang A Q, Hu Y, Zhang S H and Hao Q 2020 IEEE Photonics Journal 12 1
[38] Kingston A M, Fullagar W K, Myers G R, Adams D, Pelliccia D and Paganin D M 2020 arXiv:2009.02139
[39] Li H, Xiong J and Zeng G H 2011 Opt. Engineering 50 127005
[40] Tropp J A and Gilbert A C 2007 IEEE Transactions on Information Theory 53 4655
[41] Chan K W C, O'Sullivan M N and Boyd R W 2010 Opt. Express 18 5562
[42] Mccann M T, Jin K H and Unser M 2017 IEEE Signal Processing Magazine 34 6
[43] Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y 2014 Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) pp. 1724–1734
[44] Donahue J, Hendricks L A, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K and Darrell T 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2625–2634
[45] Sutskever I, Vinyals O and Le Q V 2014 arXiv:1409.3215 [cs.CL]
[46] He K M, Zhang X Y, Ren S Q and Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778
[47] Simonyan K and Zisserman A2014 arXiv:1409.1556v6 [CoRR]
[48] Bochkovskiy A, Wang C Y and Liao H Y M 2020 arXiv:2004.10934v1[CoRR]
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[7] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[8] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[11] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[12] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
No Suggested Reading articles found!