INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations |
Wei Hu(胡伟)1, Wenwei Luo(罗文崴)1,†, Hewen Wang(王鹤文)2, and Chuying Ouyang(欧阳楚英)1 |
1 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China; 2 College of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China |
|
|
Abstract Understanding the mechanism of the interfacial reaction between the cathode material and the electrolyte is a significant work because the interfacial reaction is an important factor affecting the stability, capacity, and cycling performance of Li-ion batteries. In this work, spin-polarized density functional theory calculations with on-site Coulomb energy have been employed to study the adsorption of electrolyte components propylene carbonate (PC) on the LiMn2O4 (100) surface. The findings show that the PC molecule prefers to interact with the Mn atom on the LiMn2O4 (100) surface via the carbonyl oxygen (O c), with the adsorption energy of -1.16 eV, which is an exothermic reaction. As the adsorption of organic molecule PC increases the Mn atoms coordination with O atoms on the (100) surface, the Mn3 + ions on the surface lose charge and the reactivity is substantially decreased, which improves the stability of the surface and benefits the cycling performance.
|
Received: 20 October 2020
Revised: 24 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
81.05.Hd
|
(Other semiconductors)
|
|
82.20.Ej
|
(Quantum theory of reaction cross section)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51962010). |
Corresponding Authors:
†Corresponding author. E-mail: luowenwei@jxnu.edu.cn
|
Cite this article:
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英) Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations 2021 Chin. Phys. B 30 038202
|
1 Goodenough J B and Park K 2013 J. Am. Chem. Soc. 135 1167 2 Fergus J W 2010 J. Power Sources 195 939 3 Lu L G, Han X B, Li J Q, Hua J F and Ouyang M G 2013 J. Power Sources 226 272 4 Armand M and Tarascon J M 2008 Nature 451 652 5 Wu M S, Xu B and Ouyang C Y 2016 Chin. Phys. B 25 018206 6 Shi S Q, Ouyang C Y, Lei M S and Tang W H 2007 J. Power Sources 171 908 7 Moriwake H, Kuwabara A, Fisher C A J, Huang R, Hitosugi T, Ikuhara Y H, Oki H and Ikuhara Y 2013 Adv. Mater. 25 618 8 Yahia H B, Shikano M and Kobayashi H 2013 Chem.Mater. 25 3687 9 Ning F H, Li S, Xu B and Ouyang C Y 2014 Solid State Ionics 263 46 10 Ning F H, Xu B, Shi J, Wu M S, Hu Y Q and Ouyang C Y 2016 J. Phys. Chem. C 120 18428 11 Liu H, Tong Y, Kuwata N, Osawa M, Kawamura J and Ye S 2009 J. Phys. Chem. C 113 20531 12 Ouyang C Y, Shi S Q and Lei M S 2009 J. Alloy. Compd. 474 370 13 Ouyang C Y, Du Y L, Shi S Q and Lei M S 2009 Phys. Lett. A 373 2796 14 Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2004 Europhys. Lett. 67 28 15 Ouyang C Y, Zeng X M, S?ljivancanin Z and Baldereschi A 2010 J. Phys. Chem. C 114 4756 16 Xiao L, Xiao J, Yu X, Yan P, Zheng J, Engelhard M, Bhattacharya P, Wang C, Yang X Q and Zhang J G 2015 Nano Energy 16 143 17 Wang Z Q, Chen Y C and Ouyang C Y 2014 Phys. Lett. A 378 2449 18 Xiao R J, Li H and Chen L Q 2012 Chem. Mater. 24 4242 19 Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z Q, Chen L Q and Huang X J 2003 Phys. Rev. B 68 195108 20 Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Phys. Rev. B 69 104303 21 Takahashi M, Tobishima S, Takei K and Sakurai Y 2002 Solid State Ionics 148 283 22 Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q and Chen L Q 2011 Appl. Phys. A 104 529 23 Chen Y C, Xie K, Pan Y, Zheng C M and Wang H L 2011 Chin. Phys. B 20 28201 24 Lee M J, Lee S, Oh P, Kim Y and Cho J 2014 Nano Lett. 14 993 25 Zhang Z F, Chen Z L, Wang G J, Ren H, Pan M, Xiao L L, Wu K C, Zhao L T, Yang J Q, Wu Q G, Shu J, Wang D J, Zhang H L, Huo N and Li J 2016 Phys. Chem. Chem. Phys. 18 6893 26 Liu W W, Wang D, Wang Z F, Deng J G, Lau W and Zhang Y N 2017 Phys. Chem. Chem. Phys. 19 6481 27 Komaba S, Kaplan B, Ohtsuka T, Kataoka Y, Kumagai N and Groult H 2003 J. Power Sources 119-121 378 28 Leggesse E G, Tsau K, Liu Y, Nachimuthu S and Jiang J 2016 Electrochim. Acta 210 61 29 Han Z H, Jia X Z, Zhan H and Zhou Y H 2013 Electrochim. Acta 114 772 30 Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121 31 Hautier G, Ong S P, Jain A, Moore C J and Ceder G 2012 Phys. Rev. B 85 155208 32 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 18212 33 Morgan B J and Watson G W 2007 Surf. Sci. 601 5034 34 Hu W, Wang H W, Luo W W, Xu B and Ouyang C Y 2020 Solid State Ionics 347 115257 35 Ouyang C Y, \vSljivan\vcanin \vZ and Baldereschi A 2010 J. Chem. Phys. 133 204701 36 Shi Y S, Zhu S M, Zhu C L, Li Y, Chen Z X and Zhang D 2015 Electrochim. Acta 154 17 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|