Abstract An ordinary differential equation (ODE) model of tumor growth with the effect of tumor-immune interaction and chemotherapeutic drug is presented and studied. By analyzing the existence and stability of equilibrium points, the dynamic behavior of the system is discussed elaborately. The chaotic dynamics can be obtained in our model by equilibria analysis, which show the existence of chaos by calculating the Lyapunov exponents and the Lyapunov dimension of the system. Moreover, the action of the infusion rate of the chemotherapeutic drug on the resulting dynamics is investigated, which suggests that the application of chemotherapeutic drug can effectively control tumor growth. However, in the case of high-dose chemotherapeutic drug, chemotherapy-induced effector immune cells damage seriously, which may cause treatment failure.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11762011).
Corresponding Authors:
Hong-Li Yang
E-mail: imuyhl@imu.edu.cn
Cite this article:
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵) Dynamics analysis in a tumor-immune system with chemotherapy 2021 Chin. Phys. B 30 058201
[1] Gatenby R A and Maini P K 2003 Nature421 321 [2] Liu N, Wang D N, Liu H Y, Yang H L and Yang L G 2020 Chin. Phys. B29 068704 [3] Hellström K E and Hellström I 1974 Advances in Immunology18 209 [4] Boon T, Cerottini J, Den Eynde B V, Der Bruggen P V and Van Pel A 1994 Annual Review of Immunology12 337 [5] Kuznetsov V A, Makalkin I A, Taylor M A and Perelson A S 1994 Bulletin of Mathematical Biology56 295 [6] Kirschner D E and Panetta J C 1998 J. Math. Biol.37 235 [7] Letellier C, Denis F and Aguirre L A 2013 J. Theor. Biol.322 7 [8] Neoptolemos J P, Stocken D D, Friess H, Bassi C, Dunn J A, Hickey H, Beger H G, Fernandezcruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A F, Spooner D, Kerr D J and Buchler M W 2004 The New England Journal of Medicine350 1200 [9] Sanga S, Sinek J P, Frieboes H B, Ferrari M and Cristini V 2006 Expert Review of Anticancer Therapy6 1361 [10] Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, Han Y and Ren X 2009 Cytotherapy11 1076 [11] Machiels J H, Reilly R T, Emens L A, Ercolini A M, Lei R Y, Weintraub D, Okoye F I and Jaffee E M 2001 Cancer Research61 3689 [12] Nowak A K, Robinson B and Lake R A 2003 Cancer Research63 4490 [13] Li D X and Ying L 2017 Chin. Phys. B26 090203 [14] Dudley M E, Wunderlich J R, Robbins P F, Yang J C, Hwu P, Schwartzentruber D J, Topalian S L, Sherry R, Restifo N P, Hubicki A M, Robinson M R, Raffeld M, Duray P, Seipp C A, Rogers-Freezer L, Morton K E, Mavroukakis S A, White D E and Rosenberg S A 2002 Science298 850 [15] Ramakrishnan R, Assudani D, Nagaraj S, Hunter T B, Cho H I, Antonia S, Celis E and Gabrilovich D I 2010 Journal of Clinical Investigation120 1111 [16] Ahn I and Park J 2011 Biosystems106 121 [17] Gillio A P, Gasparetto C, Laver J, Abboud M, Bonilla M A 1990 Journal of Clinical Investigation85 1560 [18] Bunimovichmendrazitsky S, Byrne H M and Stone L 2008 Bulletin of Mathematical Biology70 2055 [19] Bunimovichmendrazitsky S, Shochat E and Stone L 2007 Bulletin of Mathematical Biology69 1847 [20] Castiglione F and Piccoli B 2007 J. Theor. Biol.247 723 [21] De Pillis L G, Gu W and Radunskaya A E 2006 J. Theor. Biol.238 841 [22] Itik M and Banks S P 2010 Int. J. Bifurc. Chaos20 71 [23] Hao M L, Xu W, Gu X D and Qi L Y 2014 Chin. Phys. B23 090501 [24] De Pillis L G and Radunskaya A E 2007 J. Theor. Med.3 79 [25] De Pillis L G and Radunskaya A E 2003 Mathematical and Computer Modelling: An International Journal37 1221 [26] De Pillis L G, Radunskaya A E and Wiseman C L 2005 Cancer Research65 7950 [27] Usher J R 1994 Comput. Math. Appl.28 73 [28] Pinho S T R, Freedman H I and Nani F 2002 Math. Comput. Model.36 773 [29] Letellier C, Sasmal S K, Draghi C, Denis F, Ghosh D 2017 Chaos, Solitons and Fractals99 297 [30] Pinho S T, Bacelar F S, Andrade R F and Freedman H I 2013 Nonlinear Analysis-Real World Applications14 815 [31] Kamke E 1932 Acta Mathematica58 57 [32] Kot M 2001 Elements of Mathematical Ecology (Cambridge: Cambridge University Press) pp. 365-376 [33] Viger L, Denis F, Rosalie M and Letellier C 2014 J. Theor. Biol.360 21 [34] Borges F S, Iarosz K C, Ren H P, Batista A M, Baptista M S, Viana R L, Lopes S R and Grebogi C 2014 Biosystems116 43 [35] Li X M and Liao S J 2018 Applied Mathematics and Mechanics (English Edition) 39 1529 [36] Cai M, Liu W F and Liu J 2013 Applied Mathematics and Mechanics (English Edition) 34 627 [37] Alvarez R F, Barbuto J A and Venegeroles R 2019 J. Theor. Biol.471 42 [38] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D: Nonlinear Phenomena16 285 [39] De Pillis L G and Radunskaya A E 2001 J. Theor. Med.3 79 [40] Denis F and Letellier C 2012 Cancer Radiother16 404 [41] Denis F and Letellier C 2012 Cancer Radiother16 230 [42] Davoli T, Xu A W, Mengwasser K E, Sack L M, Yoon J C, Park P J and Elledge S J 2013 Cell155 948 [43] Klein K, Maier T, Hirschfeld-Warneken V C and Spatz J P 2013 Nano Lett.13 5474 [44] Crawford S A 2017 Journal of Traditional Medicine and Clinical Naturopathy6 1000232
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.