Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050503    DOI: 10.1088/1674-1056/25/5/050503
GENERAL Prev   Next  

A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control

Chao-Xia Zhang(张朝霞)1, Si-Min Yu(禹思敏)2
1. Department of Computer Science, Guangdong University of Education, Guangzhou 510303, China;
2. Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract  This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.
Keywords:  non-equilibrium multi-wing hyperchaotic system      single parameter control      unified step function      circuit implementation  
Received:  17 November 2015      Revised:  26 January 2016      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61403143), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313739), the Science and Technology Foundation Program of Guangzhou City, China (Grant No. 201510010124), and the Excellent Doctorial Dissertation Foundation of Guangdong Province, China (Grant No. XM080054).
Corresponding Authors:  Si-Min Yu     E-mail:  siminyu@163.com

Cite this article: 

Chao-Xia Zhang(张朝霞), Si-Min Yu(禹思敏) A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control 2016 Chin. Phys. B 25 050503

[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[2] Li X J and Zhou D H 2015 Acta Phys. Sin. 64 140501 (in Chinese)
[3] Michael S, Marius F D and Aziz A M A 2015 Chin. Phys. B 24 060507
[4] Chen G and Lai D 1998 Int. J. Bifurc. Chaos 8 1585
[5] Wang F Q and Liu C X 2007 Chin. Phys. B 16 0942
[6] Tang K S, Zhong G Q, Chen G and Man K F 2001 IEEE Trans. Circuits Syst. I 48 1369
[7] Huang Y, Zhang P and Zhao W F 2015 IEEE Trans. Circuits Syst. II 62 496
[8] Chen L, Shi Y D and Wang D S 2010 Chin. Phys. B 19 0100503
[9] Bouallegue K, Chaari A and Toumi A 2010 Chaos Solit. Fract. 44 79
[10] Yu S M, Tang W K S, Lü J H and Chen G 2008 IEEE Trans. Circuits Syst. II 55 1168
[11] Zhou X, Wang C H and Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese)
[12] Luo X H, Tu Z W, Liu X R, Cai C, Liang Y L and Gong P 2010 Chin. Phys. B 19 070510
[13] Lü J H and Chen G 2006 Int. J. Bifurc. Chaos 16 775
[14] Silva C P 1993 IEEE Trans Circuits Syst. I 40 675
[15] Lorenz E N 1963 J. Atmos. Sci. 20 130
[16] Chen G R and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[17] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[18] Lü J H, Chen G R and Cheng D 2004 Int. J. Bifurc. Chaos 14 1507
[19] Tahir F R, Jafari S, Pham V T, Volos C and Wang X 2015 Int. J. Bifurc. Chaos 25 1550056
[20] Sprott J C 1994 Phys. Rev. E 50 647
[21] Wei Z 2011 Phys. Lett. A 376 102
[22] Li C and Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450034
[23] Leonov G A, Kuznetsov N V and Vagaitsev V I 2012 Physica D 241 1482
[24] Chaudhuri U and Prasad A 2014 Phys. Lett. A 378 713
[25] Yu S M, Lü J H, Chen G R and Yu X H 2011 IEEE Trans Circuits Syst. II 58 314
[1] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[2] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[3] Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system
Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭). Chin. Phys. B, 2013, 22(8): 080504.
[4] Forming and implementing a hyperchaotic system with rich dynamics
Liu Wen-Bo(刘文波), Wallace K. S. Tang(邓榤生), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2011, 20(9): 090510.
[5] A novel one equilibrium hyper-chaotic system generated upon Lü attractor
Jia Hong-Yan(贾红艳), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2010, 19(2): 020507.
[6] Circuit implementation and multiform intermittency in a hyper-chaotic model extended from the Lorenz system
Cang Shi-Jian(仓诗建), Chen Zeng-Qiang(陈增强), and Wu Wen-Juan(吴文娟). Chin. Phys. B, 2009, 18(5): 1792-1800.
[7] Design and implementation of a novel multi-scroll chaotic system
Zhang Chao-Xia(张朝霞) and Yu Si-Min (禹思敏). Chin. Phys. B, 2009, 18(1): 119-129.
[8] A new Rösslor hyperchaotic system and its realization with systematic circuit parameter design
Wang Guang-Yi (王光义), He Hai-Lian (何海莲). Chin. Phys. B, 2008, 17(11): 4014-4021.
[9] Analysis and implementation of a new hyperchaotic system
Wang Guang-Yi(王光义),Liu Jing-Biao(刘敬彪), and Zheng Xin(郑欣). Chin. Phys. B, 2007, 16(8): 2278-2284.
[10] Hyperchaos evolved from the Liu chaotic system
Wang Fa-Qiang (王发强), Liu Chong-Xin (刘崇新). Chin. Phys. B, 2006, 15(5): 963-968.
No Suggested Reading articles found!