Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024210    DOI: 10.1088/1674-1056/abc3b4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of dark soliton generation in the microcavity with mode-interaction

Xin Xu(徐昕)†, Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋)
School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
Abstract  Mode-interaction plays an important role in the dark soliton generation in the microcavity. It is beneficial to the excitation of dark solitons, but also facilitates a variety of dark soliton states. Based on the non-normalized Lugiato-Lefever equation, the evolution of dark soliton in the microcavity with mode-interaction is investigated. By means of mode-interaction, the initial continuous wave (CW) field evolves into a dark soliton gradually, and the spectrum expands from a single mode to a broadband comb. After changing the mode-interaction parameters, the original modes which result in dual circular dark solitons inside the microcavity, are separated from the resonant mode by 2 free spectral ranges (FSR). When the initial field is another feasible pattern of weak white Gaussian noise, the large frequency detuning leads to the amplification of the optical power in the microcavity, and the mode-interaction becomes stronger. Then, multiple dark solitons, which correspond to the spectra with multi-FSR, can be excited by selecting appropriate mode-interaction parameters. In addition, by turning the mode-interaction parameters, the dark soliton number can be regulated, and the comb tooth interval in the spectrum also changes accordingly. Theoretical analysis results are significant for studying the dark soliton in the microcavity with mode-interaction.
Keywords:  dark soliton      microcavity      mode-interaction  
Received:  13 August 2020      Revised:  24 September 2020      Accepted manuscript online:  22 October 2020
PACS:  42.55.-f (Lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51705121) and the National Key Research and Development Program of China (Grant No. SQ2019YFE010747).
Corresponding Authors:  Corresponding author. E-mail: xuxin@hfut.edu.cn   

Cite this article: 

Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋) Analysis of dark soliton generation in the microcavity with mode-interaction 2021 Chin. Phys. B 30 024210

1 Del'Haye P, Coillet A, Fortier T, Beha K, Cole D C, Yang K Y, Lee H, Vahala K J, Papp S B and Diddams S A 2016 Nat. Photon. 10 516
2 Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S and Hummon M T 2019 Optica 6 680
3 Lamb E S, Carlson D R, Hickstein D D, Stone J R, Diddams S A and Papp S B 2018 Phys. Rev. Lett. 9 024030
4 Suh M G and Vahala K J 2018 Science 359 884
5 Johnson A R, Okawachi Y, Levy J S, Cardenas J, Saha K, Lipson M and Gaeta A L 2012 Opt. Lett. 37 875
6 Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q H and Xiao Y F 2019 Nat. Photon. 13 21
7 Xue X X, Xuan Y, Wang C, Wang P H, Liu Y, Niu B, Leaird D E, Qi M H and Weiner A M 2016 Opt. Express 24 687
8 Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2290
9 Kobatake T, Kato T, Itobe H, Nakagawa Y and Tanabe T 2016 IEEE Photonics J. 8 4501109
10 Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A 89 063814
11 Hu X H, Zhang W, Liu Y S, Feng Y, Zhang W F, Zhang L R, Wang Y S and Zhao W 2017 Chin. Phys. B 26 074216
12 Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H and Weiner A M 2015 Nat. Photon. 9 594
13 Ferdous F, Miao H, Leaird D E, Srinivasan K, Wang J, Chen L, Varghese L T and Weiner A M 2011 Nat. Photon. 5 770
14 Del'Haye P, Arcizet O, Gorodetsky M L, Holzwarth R and Kippenberg T J 2009 Nat. Photon. 3 529
15 Grudinin I S, Yu N and Maleki L 2009 Opt. Lett. 34 878
16 Savchenkov A A, Grudinin I S, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S and Maleki L 2006 Opt. Lett. 31 1313
17 Liu Y, Xuan Y, Xue X X, Wang P H, Chen S, Metcalf A J, Wang J, Leaird D E, Qi M and Weiner A M 2014 Optica 1 137
18 Haus H A and Huang W 1991 Proc. IEEE 79 1505
19 Xue X X, Xuan Y, Wang P H, Liu Y, Leaird D E, Qi M H and Weiner A M 2015 Laser & Photonics Rev. 4 L23
20 Bao C, Xuan Y, Leaird D E, Wabnitz S and Weiner A M 2017 Optica 4 1011
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[6] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[7] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[8] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[9] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[10] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[11] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[12] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[13] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[14] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[15] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
No Suggested Reading articles found!