Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010305    DOI: 10.1088/1674-1056/abb7f4
GENERAL Prev   Next  

Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system

Qi-Liang He(贺启亮)†, Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军)
School of Physics and Electronics, Guizhou Normal University, Guiyang\/ 550001, China
Abstract  Taking the advantage of "parity kicks" pulses, we investigate the non-classical correlation dynamics and quantum state transfer in an atom-cavity-fiber system, which consists of two identical subsystems, each subsystem comprising of multiple two-level atoms trapped in two remote single-model optical cavities that are linked by an optical fiber. It is found that the non-classical correlations and the fidelity of quantum state transfer (between the atoms) can be greatly improved by the parity kicks pulses. In particular, with decrease of the time intervals between two consecutive pulses, perfect non-classical correlation transfer and entangled state transfer can be achieved.
Keywords:  atom-cavity-fiber system      quantum state transfer      parity kicks pulses  
Received:  02 July 2020      Revised:  26 August 2020      Accepted manuscript online:  14 September 2020
PACS:  03.65.Ud,03.67.-a,42.50.Pq  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364006 and11264008), the Science and Technology Foundation of Guizhou Province, China (Grant No. [2017]7343), the Doctor Fund of Guizhou Normal University, and the Fund from the Key Laboratory of Low-dimensional Condensed Matter Physics of Higher Eeducational Institution of Guizhou Province, China (Grant No. [2016]002).
Corresponding Authors:  Corresponding author. E-mail: heliang005@163.com   

Cite this article: 

Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军) Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system 2021 Chin. Phys. B 30 010305

1 Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
2 Ekert A K 1991 Phys. Rev. Lett. 67 661
3 Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
4 Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
5 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
6 Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054
7 Meyer D A 2000 Phys. Rev. Lett. 85 2014
8 Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
9 Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
10 Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. B 27 090302
11 Maziero J, Guzman H C, Celéri L C, Sarandy M S and Serra R M 2010 Phys. Rev. A 82 012106
12 Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009
13 Soares-Pinto D O, Cé leri L C, Auccaise R, Fanchini F F, deAzevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
14 Datta A 2009 Phys. Rev. A 80 052304
15 Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
16 Liu T K, Liu F, Shan C J and Liu J B 2019 Chin. Phys. B 28 090304
17 Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
18 Li Y L and Fang M F 2010 Chin. Phys. B 19 030311
19 Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
20 Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
21 Ye S Y, Yang Z B, Zheng S B and Serafini A 2010 Phys. Rev. A 82 012307
22 Shen L T, Chen R X, Wu H Z and Yang Z B 2014 Chin. Phys. B 23 040303
23 Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Europhys. Lett. 99 20003
24 Wu H Z and Yang Z B 2013 Chin. Phys. Lett. 30 124203
25 Wu H Z and Yang Z B 2014 Chin. Phys. Lett. 31 024206
26 Yang Z B, Ye S Y, Serafini A and Zheng S B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085506
27 Zhang C L and Chen M F 2015 Chin. Phys. B 24 070310
28 Li W A and Wei L F 2012 Opt. Express 20 13440
29 Zhang Y Q, Zhang S, Yeon, K H and Yu S C 2011 Chin. Phys. B 20 120310
30 Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
31 Zhong Z R 2016 Sci. Rep. 6 8
32 Mohamed A B A and Eleuch H 2018 J. Opt. Soc. Am. B 35 47
33 Ritter S, Nö lleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mü cke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
34 Vogell B, Vermersch B, Northup T E, Lanyon B P and Muschik C A 2017 Quantum Sci. Technol. 2 045003
35 Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
36 Vitali D and Tombesi P 1999 Phys. Rev. A 59 4178
37 Wootters W K 1998 Phys. Rev. Lett. 80 2245
38 O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
39 Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
40 Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
41 Marian P and Marian T A 2007 Phys. Rev. A 76 054307
42 Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
43 Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
44 Laine1 E M, Piilo1 J and Breuer H P 2010 Europhys. Lett. 92 60010
45 Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nature Phys. 7 931
46 Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[1] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[2] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[3] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[4] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[5] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[6] High-dimensional quantum state transfer in a noisy network environment
Qin Wei (秦伟), Li Jun-Lin (李俊林), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2015, 24(4): 040305.
[7] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao(吴超), Fang Mao-Fa(方卯发), Xiao Xing(肖兴), Li Yan-Ling(李艳玲), and Cao Shuai(曹帅). Chin. Phys. B, 2011, 20(2): 020305.
[8] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning(李宇宁), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(11): 110305.
[9] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发) . Chin. Phys. B, 2011, 20(10): 100312.
[10] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She(马宋设) and Chen Mei-Feng(陈美锋). Chin. Phys. B, 2009, 18(8): 3247-3250.
[11] Quantum communication in spin star configuration
Deng Hong-Liang(邓洪亮) and Fang Xi-Ming(方细明). Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!