|
|
Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system |
Qi-Liang He(贺启亮)†, Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军) |
School of Physics and Electronics, Guizhou Normal University, Guiyang\/ 550001, China |
|
|
Abstract Taking the advantage of "parity kicks" pulses, we investigate the non-classical correlation dynamics and quantum state transfer in an atom-cavity-fiber system, which consists of two identical subsystems, each subsystem comprising of multiple two-level atoms trapped in two remote single-model optical cavities that are linked by an optical fiber. It is found that the non-classical correlations and the fidelity of quantum state transfer (between the atoms) can be greatly improved by the parity kicks pulses. In particular, with decrease of the time intervals between two consecutive pulses, perfect non-classical correlation transfer and entangled state transfer can be achieved.
|
Received: 02 July 2020
Revised: 26 August 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
03.65.Ud,03.67.-a,42.50.Pq
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364006 and11264008), the Science and Technology Foundation of Guizhou Province, China (Grant No. [2017]7343), the Doctor Fund of Guizhou Normal University, and the Fund from the Key Laboratory of Low-dimensional Condensed Matter Physics of Higher Eeducational Institution of Guizhou Province, China (Grant No. [2016]002). |
Corresponding Authors:
†Corresponding author. E-mail: heliang005@163.com
|
Cite this article:
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军) Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system 2021 Chin. Phys. B 30 010305
|
1 Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 2 Ekert A K 1991 Phys. Rev. Lett. 67 661 3 Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895 4 Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 5 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 6 Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054 7 Meyer D A 2000 Phys. Rev. Lett. 85 2014 8 Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 9 Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101 10 Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. B 27 090302 11 Maziero J, Guzman H C, Celéri L C, Sarandy M S and Serra R M 2010 Phys. Rev. A 82 012106 12 Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009 13 Soares-Pinto D O, Cé leri L C, Auccaise R, Fanchini F F, deAzevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118 14 Datta A 2009 Phys. Rev. A 80 052304 15 Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024 16 Liu T K, Liu F, Shan C J and Liu J B 2019 Chin. Phys. B 28 090304 17 Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166 18 Li Y L and Fang M F 2010 Chin. Phys. B 19 030311 19 Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503 20 Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305 21 Ye S Y, Yang Z B, Zheng S B and Serafini A 2010 Phys. Rev. A 82 012307 22 Shen L T, Chen R X, Wu H Z and Yang Z B 2014 Chin. Phys. B 23 040303 23 Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Europhys. Lett. 99 20003 24 Wu H Z and Yang Z B 2013 Chin. Phys. Lett. 30 124203 25 Wu H Z and Yang Z B 2014 Chin. Phys. Lett. 31 024206 26 Yang Z B, Ye S Y, Serafini A and Zheng S B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085506 27 Zhang C L and Chen M F 2015 Chin. Phys. B 24 070310 28 Li W A and Wei L F 2012 Opt. Express 20 13440 29 Zhang Y Q, Zhang S, Yeon, K H and Yu S C 2011 Chin. Phys. B 20 120310 30 Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303 31 Zhong Z R 2016 Sci. Rep. 6 8 32 Mohamed A B A and Eleuch H 2018 J. Opt. Soc. Am. B 35 47 33 Ritter S, Nö lleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mü cke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195 34 Vogell B, Vermersch B, Northup T E, Lanyon B P and Muschik C A 2017 Quantum Sci. Technol. 2 045003 35 Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324 36 Vitali D and Tombesi P 1999 Phys. Rev. A 59 4178 37 Wootters W K 1998 Phys. Rev. Lett. 80 2245 38 O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302 39 Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105 40 Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) 41 Marian P and Marian T A 2007 Phys. Rev. A 76 054307 42 Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 43 Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115 44 Laine1 E M, Piilo1 J and Breuer H P 2010 Europhys. Lett. 92 60010 45 Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nature Phys. 7 931 46 Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|