Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037501    DOI: 10.1088/1674-1056/22/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic compensation temperature in kinetic spin-5/2 Ising model on hexagonal lattice

Ümüt Temizera, Ayşegül Özkılıçb
a Department of Physics, Bozok University, 66200 Yozgat, Turkey;
b Institute of Science, Bozok University, 66200 Yozgat, Turkey
Abstract  We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternate layers of a hexagonal lattice by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=5/2 and S=5/2. We employ the Glauber transition rates to construct the mean-field dynamic equations. First, we investigate the time variations of the average sublattice magnetizations to find the phases in the system and then the thermal behavior of the dynamic sublattice magnetizations to characterize the nature (first- or second-order) of the phase transitions and to obtain the dynamic phase transition (DPT) points. We also study the thermal behavior of the dynamic total magnetization to find the dynamic compensation temperature and to determine the type of the dynamic compensation behavior. We present the dynamic phase diagrams, including the dynamic compensation temperatures, in nine different planes. The phase diagrams contain seven different fundamental phases, thirteen different mixed phases, in which the binary and ternary combination of fundamental phases and the compensation temperature or the L-type behavior strongly depend on the interaction parameters.
Keywords:  kinetic Ising model      dynamic phase transition      dynamic compensation temperature  
Received:  02 August 2012      Accepted manuscript online: 
PACS:  75.10.Hk (Classical spin models)  
  74.40.Gh (Nonequilibrium superconductivity)  
  64.60.Ht (Dynamic critical phenomena)  
  75.30. Kz  
Corresponding Authors:  Ümüt Temizer     E-mail:  umut.temizer@bozok.edu.tr

Cite this article: 

Ümüt Temizer, Ayşegül Özkılıç Dynamic compensation temperature in kinetic spin-5/2 Ising model on hexagonal lattice 2013 Chin. Phys. B 22 037501

[1] Néel L 1948 Ann. Phys. 3 137
[2] Mansuripur M 1987 J. Appl. Phys. 61 1580
[3] Mathoniere C, Nuttall C J, Carling S G and Day P 1996 Inorg. Chem. 35 1201
[4] Hernando A and Kulik T 1994 Phys. Rev. B 49 7064
[5] Kaneyoshi T 1995 Solid State Commun. 93 691
[6] Abubrig O F, Bobák A, Horváth D and Jaščur M 2002 Czech. J. Phys. 52 131
[7] Machado E and Buendía G M 2003 Phys. Rev. B 68 224411
[8] Boechat B, Filgueiras R A, Cordeiro C and Branco N S 2002 Physica A 304 429
[9] Buendía G M and Cardona W 1999 Phys. Rev. B 59 6784
[10] Oitmaa J 2005 Phys. Rev. B 72 224404
[11] Benayad N, Lahcini T and Fathi A 2007 Condens. Matter 8 33
[12] Bobák A and Jaščur M 1995 Phys. Rev. B 51 11533
[13] Kaneyoshi T, Jaščur M and Tomczak P 1992 J. Phys.: Condens. Matter 4 L653
[14] Bobák A, Jaščur M, Horváth D and Balcerzak T 2002 Czech. J. Phys. 52 127
[15] Jiang W, Wei G and Zhang Z 2003 Phys. Rev. B 68 134432
[16] Buendía G M and Novotny M A 1997 J. Phys.: Condens. Matter 9 5951
[17] Albayrak E 2007 Physica B Condens. Matter 391 47
[18] Ekiz C and Erdem R 2006 Phys. Lett. A 352 291
[19] Buendía G M and Liendo J A 1997 J. Phys.: Condens. Matter 9 5439
[20] Aydiner E, Yüksel Y, Kiş E and Polat H 2009 J. Magn. Magn. Mater. 321 3193
[21] Kaneyoshi T 1989 Solid State Commun. 70 975
[22] Espriella N De La and Buendía G M 2011 J. Phys.: Condens. Matter 23 176003
[23] Ekiz C 2006 J. Magn. Magn. Mater. 307 139
[24] Godoy M, Leite V S and Figueiredo W 2004 Phys. Rev. B 69 054428
[25] Figueiredo W, Godoy M and Leite V S 2004 Braz. J. Phys. 34 392
[26] Keskin M and Ertaş M 2010 J. Stat. Phys. 139 333
[27] Keskin M, Deviren B and Canko O 2009 IEEE Trans. Mag. 45 2640
[28] Deviren B and Keskin M 2010 J. Stat. Phys. 140 934
[29] Keskin M and Kantar E 2010 J. Magn. Magn. Mater. 322 2789
[30] Keskin M and Ertaş M 2009 Phys. Rev. E 80 061140
[31] Korkmaz T and Temizer ü 2012 J. Magn. Magn. Mater. 324 3876
[32] Plascak J A, Moreira J G and sá Barreto F C 1993 Phys. Lett. A 173 360
[33] Kaneyoshi T and Jaščur M 1993 Phys. Sta. Sol. B 175 225
[34] Benyoussef A 1993 Phys. Sta. Sol. B 178 233
[35] Kerouad M, Saber M and Tucker J W 1994 Physica A 210 424
[36] Song W J and Yang C Z 1994 Solid State Commun. 92 361
[37] Lee Y S, Greven M, Wells B O, Birgeneau B J and Shirane G 1998 Eur. Phys. J. B 5 15
[38] He Z, Ueda Y and Itoh M 2007 Solid State Commun. 141 22
[39] Cowley R A, Aharony A, Birgeneau R J, Pelcovits R A, Shirane G and Thurston T R 1993 Zeitschrift fuer Phys. B 93 5
[40] Cowley R A, Shirane G, Birgeneau R J and Guggenheim H J 1977 Phys. Rev. B 15 4292
[41] Costa B V and Pires A S T 2003 J. Magn. Magn. Mater. 262 316
[42] Christianson R J, Leheny R L, Birgeneau R J and Erwin R W 2001 Phys. Rev. B 63 140401
[43] Wildes A R, Ronnow H M, Roeesli B, Haris M J and Godfrey K W 2006 Phys. Rev. B 74 094422
[44] Deviren B, Keskin M and Canko O 2009 Phase Trans. 82 683
[45] Ertaş M and Keskin M 2010 Phase Trans. 83 349
[46] Glauber R J 1963 J. Math. Phys. 4 294
[47] Ertaş M, Keskin M and Deviren B 2012 J. Magn. Magn. Mater. 324 1503
[48] Chern G, Horng L, Shieh W K and Wu T C 2001 Phys. Rev. B 63 094421
[49] Kageyama H, Khomskii D I, Levitin R Z and Vasil'ev A N 2003 Phys. Rev. B 67 224422
[50] Chikazumi S 1997 Physics of Ferromagnetism (Oxford: Oxford University Press)
[51] Temizer ü, Keskin M and Canko O 2009 J. Magn. Magn. Mater. 321 2999
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[3] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
[4] Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Bayram Deviren, Osman Canko, and Mustafa Keskin. Chin. Phys. B, 2010, 19(5): 050518.
[5] Stochastic resonance and nonequilibrium dynamic phase transition of Ising spin system driven by a joint external field
Shao Yuan-Zhi (邵元智), Zhong Wei-Rong (钟伟荣), Lin Guang-Ming (林光明), Li Jian-Can (李坚灿). Chin. Phys. B, 2005, 14(10): 2110-2116.
No Suggested Reading articles found!