Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080508    DOI: 10.1088/1674-1056/22/8/080508
GENERAL Prev   Next  

Comment on ‘Mathematical structure of the three-dimensional (3D)Ising model’

Jacques H. H. Perk
Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072, USA
Abstract  The review paper by Zhang Zhi-Dong (Zhang Z D 2013 Chin. Phys. B 22 030513, arXiv:1305.2956) contains many errors and is based on several earlier works that are equally wrong.
Keywords:  Ising model      Lie algebra      series analysis      thermodynamic limit  
Received:  20 June 2013      Accepted manuscript online: 
PACS:  05.50+q  
  75.10.Hk (Classical spin models)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported in part by NSF grant PHY 07-58139.
Corresponding Authors:  Jacques H. H. Perk     E-mail:  perk@okstate.edu

Cite this article: 

Jacques H. H. Perk Comment on ‘Mathematical structure of the three-dimensional (3D)Ising model’ 2013 Chin. Phys. B 22 080508

[1] Zhang Z D 2007 Philos. Mag. 87 5309, arXiv: 0705.1045
[2] Wu F Y, McCoy B M, Fisher M E and Chayes L 2008 Philos. Mag. 88 3093, arXiv: 0811.3876
[3] Perk J H H 2009 Philos. Mag. 89 761, arXiv: 0811.1802
[4] Zhang Z D 2008 Philos. Mag. 88 3097, arXiv: 0812.2330
[5] Zhang Z D 2013 Chin. Phys. B 22 030513, arXiv:1305.2956
[6] Domb C and Green M S editors 1974 Series Expansions for Lattice Models, Phase Transitions and Critical Phenomena Vol. 3 (London: Academic Press)
[7] Zhang Z D and March N H 2012 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 62:3 61, arXiv: 1209.3247
[8] Zhang Z D and March N H 2013 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 63:1 85, arXiv: 1209.3247
[9] Groeneveld J 1962 Phys. Lett. 3 50
[10] Ruelle D 1969 Statistical Mechanics, Rigorous Results (New York: Benjamin)
[11] Perk J H H 2012 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 62:3 45, arXiv: 1209.0731
[12] Suzuki M 1965 Phys. Lett. 19 267
[13] Suzuki M 2002 Int. J. Mod. Phys. B 16 1749
[14] Perk J H H 2013 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 63:1 89, arXiv: 1209.0731
[15] Kaufman B 1949 Phys. Rev. 76 1232
[16] Kramers H A and Wannier G H 1941 Phys. Rev. 60 252
[17] Perk J H H 2012 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 62:3 71, arXiv: 1209.0731
[18] Gallavotti G, Miracle-Solé S and Robinson D W 1967 Phys. Lett. A 25 493
[19] Zhang Z D and March N H 2012 Bull. Soc. Sci. Lettres Łódź Sér. Rech. Déform. 62:3 35, arXiv: 1110.5527
[1] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[4] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[5] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[6] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[7] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[8] Extracting hidden weak sinusoidal signal with short duration from noisy data:Analytical theory and computational realization
Ying Zhang(张英), Zhaoyang Zhang(张朝阳), Hong Qian(钱弘), Gang Hu(胡岗). Chin. Phys. B, 2017, 26(10): 100508.
[9] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[10] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[11] Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach
H. Panahi, S. Zarrinkamar, M. Baradaran. Chin. Phys. B, 2015, 24(6): 060301.
[12] Generalized symmetries of an N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system
Wang Jian-Yong (王建勇), Tang Xiao-Yan (唐晓艳), Liang Zu-Feng (梁祖峰), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(5): 050202.
[13] New 3-mode bosonic operator realization of SU(2) Lie algebra:From the point of view of squeezing
Da Cheng (笪诚), Chen Qian-Fan (陈千帆), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(9): 090302.
[14] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang (刘中强), Jiang Su-Rong (姜素蓉), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(8): 087505.
[15] Dynamical correlation between quantum entanglement and intramolecular energy in molecular vibrations:An algebraic approach
Feng Hai-Ran (冯海冉), Meng Xiang-Jia (孟祥佳), Li Peng (李鹏), Zheng Yu-Jun (郑雨军). Chin. Phys. B, 2014, 23(7): 073301.
No Suggested Reading articles found!