Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100204    DOI: 10.1088/1674-1056/aba9c0
General Prev   Next  

Direct immune-SCIR public-opinion propagation model based on real-time online users

Yun-Ming Wang(王运明)1,2,, Tian-Yi Guo(郭天一)1,2,†, Wei-Dong Li(李卫东)1,2,‡, and Bo Chen(陈波)3
1 School of Electrical and Information Engineering, Dalian Jiaotong University, Dalian 116028, China
2 Liaoning Railway Logistics Network Engineering Technology Research Center, Dalian 116028, China
3 College of Mechanical and Electronical Engineering, Lingnan Normal University, Zhanjiang 524048, China
Abstract  

Current public-opinion propagation research usually focused on closed network topologies without considering the fluctuation of the number of network users or the impact of social factors on propagation. Thus, it remains difficult to accurately describe the public-opinion propagation rules of social networks. In order to study the rules of public opinion spread on dynamic social networks, by analyzing the activity of social-network users and the regulatory role of relevant departments in the spread of public opinion, concepts of additional user and offline rates are introduced, and the direct immune-susceptible, contacted, infected, and refractory (DI-SCIR) public-opinion propagation model based on real-time online users is established. The interventional force of relevant departments, credibility of real information, and time of intervention are considered, and a public-opinion propagation control strategy based on direct immunity is proposed. The equilibrium point and the basic reproduction number of the model are theoretically analyzed to obtain boundary conditions for public-opinion propagation. Simulation results show that the new model can accurately reflect the propagation rules of public opinion. When the basic reproduction number is less than 1, public opinion will eventually disappear in the network. Social factors can significantly influence the time and scope of public opinion spread on social networks. By controlling social factors, relevant departments can analyze the rules of public opinion spread on social networks to suppress the propagate of negative public opinion and provide a powerful tool to ensure security and stability of society.

Keywords:  public opinion propagation model      direct immunization      real-time online users      basic reproduction number  
Received:  06 June 2020      Revised:  13 July 2020      Accepted manuscript online:  28 July 2020
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  64.60.aq (Networks)  
  89.75.-k (Complex systems)  
Corresponding Authors:  Corresponding author. E-mail: guotianyi960531@gmail.com第一通讯作者 Corresponding author. E-mail: li@djtu.edu.cn   
About author: 
†Corresponding author. E-mail: guotianyi960531@gmail.com
‡Corresponding author. E-mail: li@djtu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 61471080), the Equipment Development Department Research Foundation of China (Grant No. 61400010303), the Natural Science Research Project of Liaoning Education Department of China (Grant Nos. JDL2019019 and JDL2020002), the Surface Project for Natural Science Foundation in Guangdong Province of China (Grant No. 2019A1515011164), and the Science and Technology Plan Project in Zhanjiang, China (Grant No. 2018A06001).

Cite this article: 

Yun-Ming Wang(王运明), Tian-Yi Guo(郭天一)†, Wei-Dong Li(李卫东)‡, and Bo Chen(陈波) Direct immune-SCIR public-opinion propagation model based on real-time online users 2020 Chin. Phys. B 29 100204

Fig. 1.  

SCIR public-opinion propagation mode.

Fig. 2.  

DI-SCIR public-opinion propagation model based on real-time online users.

Fig. 3.  

Direct immunity probability PSR changes with the interventional force α, and the real information credibility β. When α = 0.2859 and ʲ = 1, PSR takes a maximum value of 0.7620.

Fig. 4.  

BA scale-free network topology. Nodes having higher degrees are darker in color and larger in area, and the relationship between the nodes is indicated by a solid gray line.

Fig. 5.  

BA scale-free network degree distribution logarithmic coordinate graph. The x-axis, k, represents the degree of nodes in the network, and the y-axis, P(k), represents the distribution of correspondence degrees.

Node Edge Average degree Max degree Min degree Average path length Average clustering coefficient
1000 7981 7.981 230 8 3.233 0.029
Table 1.  

Characteristic parameters of BA scale-free network.

Fig. 6.  

Effect of basic reproduction numbers on the spread of public opinion: (a) random chosen R0 = 1.3914 > 1; (b) random chosen R0 = 0.9635 < 1.

Fig. 7.  

Impact of interventional force α on the propagation of public opinion. α takes 0,0.1,0.3,0.55,0.7: density changes of (a) S state node, (b) C state node, (c) I state node, and (d) R state node.

Fig. 8.  

Impact of real information credibility β on the propagation of public opinion β takes 0,0.1,0.3,0.5,0.7, respectively: density changes of (a) S state node, (b) C state node, (c) I state node, and (d) R state node.

Fig. 9.  

Impact of interventional time T on the propagation of public opinion. T takes 3, 10, 20, 30, 40, respectively: density changes (a) of S state node, (b) C state node, (c) I state node, and (d) R state node.

Fig. 10.  

Impact of different models on the spread of public opinion. The models are SIR, SCIR, and the DI-SCIR public-opinion propagation models based on real-time online users: (a) density changes of(a) of S state node, (b) C state node, (c) I state node, and (d) R state node.

[1]
Huang J, Jin X 2011 J. Syst. Sci. Complex. 24 449 DOI: 10.1007/s11424-011-8303-1
[2]
Wang Y Q, Yang X Y, Han Y L, Wang X A 2013 Commun. Theor. Phys. 59 510 DOI: 10.1088/0253-6102/59/4/21
[3]
Zhao L, Cui H, Qiu X, Wang X, Wang J 2013 Physica A 392 995 DOI: 10.1016/j.physa.2012.09.030
[4]
Zhou J, Liu Z, Li B 2007 Phys. Lett. A 368 458 DOI: 10.1016/j.physleta.2007.01.094
[5]
Ding X, Liu Q, Zhang W 2014 J. Univ. Sci. Tech. Chin. 44 582
[6]
Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130 DOI: 10.1103/PhysRevE.69.066130
[7]
Xia L L, Jiang G P, Song B, Song Y R 2015 Physica A 437 295 DOI: 10.1016/j.physa.2015.05.113
[8]
Zhang R, Li D 2017 Physica A 483 375 DOI: 10.1016/j.physa.2017.05.006
[9]
Yin F, Lv J, Zhang X, Xia X, Wu J 2020 Math. Biosc. Eng 17 2676 DOI: 10.3934/mbe.2020146
[10]
Chen Z J, Tong W Q, Kausar S, Zheng S A 2016 Proceedings of 5th International Conference on Audio, Language and Image Processing July 11–12, 2016 Shanghai, China 658 DOI: 10.1109/ICALIP.2016.7846576
[11]
Li W, Guo T, Wang Y, Chen B 2020 Symmetry 12 584 DOI: 10.3390/sym12040584
[12]
Yao H, Gao X 2019 J. Sys. Sci. Info. 7 54
[13]
Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104 DOI: 10.1103/PhysRevE.65.036104
[14]
Yang X, Wu Y, Zhang J, Zhou T 2019 J. Stat. Mech-Theory E 3 033402
[15]
Cohen R, Havlin S, ben-Avraham D 2003 Phys. Rev. Lett. 91 247901 DOI: 10.1103/PhysRevLett.91.247901
[16]
Chen S, Lu X 2017 Sci. Rep. 7 3268 2295
[17]
Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701 in Chinese DOI: 10.7498/aps.61.238701
[18]
Mehta A, Mukhoty B, Gupta R 2016 Acta Phys. Pol. B 47 2325 DOI: 10.5506/APhysPolB.47.2325
[19]
Guo D, Wu Y, Zou Y, Meng X 2014 Acta Automatica Sin. 40 0254
[20]
Sun Q, Li Y, Hu H, Cheng S 2019 IEEE Access 7 67916 DOI: 10.1109/Access.6287639
[21]
Wang Y, Chen S, Pan C, Chen B 2018 Inf. Sci. 426 148 DOI: 10.1016/j.ins.2017.10.035
[22]
Tulu M M, Hou R, Younas T 2018 IEEE Access 6 7390 DOI: 10.1109/ACCESS.2018.2794324
[23]
Liu Q, Li T, Sun M 2017 Physica A 469 372 DOI: 10.1016/j.physa.2016.11.067
[24]
Fu X, Small M, Walker D M, Zhang H 2008 Phys. Rev. E 77 036113 DOI: 10.1103/PhysRevE.77.036113
[25]
Wang Y M, Chen B, Chen X S, Gao X E 2018 Mob. Inf. Syst. 2018 64041361
[26]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K 2000 J. Control. Release 65 271 DOI: 10.1016/S0168-3659(99)00248-5
[27]
Hu Y, Havlin S, Makse H A 2014 Phys. Rev. X 4 021031
[28]
Wang Y M, Chen B, Li W D, Zhang D P 2019 Wireless Communications & Mobile Computing 2019 6528431
[29]
Van Den Driessche P, Watmough J 2002 Math. Biosci. 180 29 DOI: 10.1016/S0025-5564(02)00108-6
[30]
Zhu G, Fu X, Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2588 DOI: 10.1016/j.cnsns.2011.08.039
[31]
Olinky R, Stone L 2004 Phys. Rev. E 70 030902 DOI: 10.1103/PhysRevE.70.030902
[32]
Zhang H, Fu X 2009 Nonlinear Anal.-Theory Methods Appl. 70 3273 DOI: 10.1016/j.na.2008.04.031
[33]
Van Mieghem P, Sahneh F D, Scoglio C 2014 Proceedings of $53$rd IEEE Annual Conference on Decision and Control December 15–17, 2014 Los Angeles, CA, USA 6228 DOI: 10.1109/CDC.2014.7040365
[34]
Van Mieghem P, van de Bovenkamp R 2013 Phys. Rev. Lett. 110 108701 DOI: 10.1103/PhysRevLett.110.108701
[35]
Barabasi A L 2009 Science 325 412 DOI: 10.1126/science.1173299
[36]
Zhang X J, Zhong S M 2016 Acta Phys. Sin. 65 230201 in Chinese DOI: 10.7498/aps.65.230201
[37]
Zhang X J, Yang H L 2016 Chin. Phys. B 25 060202 DOI: 10.1088/1674-1056/25/6/060202
[1] Dynamical analysis of a sexually transmitted disease model on complex networks
Yuan Xin-Peng (原新鹏), Xue Ya-Kui (薛亚奎), Liu Mao-Xing (刘茂省). Chin. Phys. B, 2013, 22(3): 030207.
No Suggested Reading articles found!