Special Issue:
SPECIAL TOPIC — Water at molecular level
|
TOPICAL REVIEW—Water at molecular level |
Prev
Next
|
|
|
Rules essential for water molecular undercoordination |
Chang Q Sun(孙长庆) |
School of EEE, Nanyang Technological University, Singapore 639798 |
|
|
Abstract A sequential of concepts developed in the last decade has enabled a resolution to multiple anomalies of water ice and its low-dimensionality, particularly. Developed concepts include the coupled hydrogen bond (O:H-O) oscillator pair, segmental specific heat, three-body coupling potentials, quasisolidity, and supersolidity. Resolved anomalies include ice buoyancy, ice slipperiness, water skin toughness, supercooling and superheating at the nanoscale, etc. Evidence shows consistently that molecular undercoordination shortens the H-O bond and stiffens its phonon while undercoordination does the O:H nonbond contrastingly associated with strong lone pair “:” polarization, which endows the low-dimensional water ice with supersolidity. The supersolid phase is hydrophobic, less dense, viscoelastic, thermally more diffusive, and stable, having longer electron and phonon lifetime. The equal number of lone pairs and protons reserves the configuration and orientation of the coupled O:H-O bonds and restricts molecular rotation and proton hopping, which entitles water the simplest, ordered, tetrahedrally-coordinated, fluctuating molecular crystal covered with a supersolid skin. The O:H-O segmental cooperativity and specific-heat disparity form the soul dictate the extraordinary adaptivity, reactivity, recoverability, and sensitivity of water ice when subjecting to physical perturbation. It is recommended that the premise of “hydrogen bonding and electronic dynamics” would deepen the insight into the core physics and chemistry of water ice.
|
Received: 27 March 2020
Revised: 28 March 2020
Accepted manuscript online:
|
PACS:
|
82.30.Rs
|
(Hydrogen bonding, hydrophilic effects)
|
|
64.70.kt
|
(Molecular crystals)
|
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
64.70.Ja
|
(Liquid-liquid transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21875024). |
Corresponding Authors:
Chang Q Sun
E-mail: ecqsun@ntu.edu.sg
|
Cite this article:
Chang Q Sun(孙长庆) Rules essential for water molecular undercoordination 2020 Chin. Phys. B 29 088203
|
[1] |
Sun C Q 2014 Relaxation of the Chemical Bond (Berlin:Springer-Verlag) p. 816
|
[2] |
Debenedetti P G and Klein M L 2017 Proc. Natl. Acad. Sci. USA 114 13325
|
[3] |
Pettersson L G M, Henchman R H and Nilsson A 2016 Chem. Rev. 116 7459
|
[4] |
Sun C Q and Sun Y 2016 The Attribute of Water:Single Notion and Multiple Myths (Berlin:Springer-Verlag) p. 510
|
[5] |
Amit G 2015 New Scientist September 2015, p. 38
|
[6] |
Canale L, Comtet J, Nigués A, et al. 2019 Phys. Rev. X 9 041025
|
[7] |
Gao X F and Jiang L 2004 Nature 432 36
|
[8] |
Pennisi E 2014 Science 343 1194
|
[9] |
Rosenberg R 2005 Phys. Today 12 50
|
[10] |
Oh S H, Han J G and Kim J M 2015 Fuel 158 399
|
[11] |
Schenk H J, Steppe K and Jansen S 2015 Trends Plant Science 20 199
|
[12] |
Wang K, Duan D, Wang R, et al. 2009 Langmuir 25 4787
|
[13] |
Zhang X, Liu X, Zhong Y, et al. 2016 Langmuir 32 11321
|
[14] |
He Z, Zhou J, Lu X, et al. 2013 J. Phys. Chem. C 117 11412
|
[15] |
Meister K, Strazdaite S, DeVries A L, et al. 2014 Proc. Natl. Acad. Sci. USA 111 17732
|
[16] |
Miranda P, Xu L, Shen Y, et al. 1998 Phys. Rev. Lett. 81 5876
|
[17] |
Shin D, Hwang J and Jhe W 2019 Nat. Commun. 10 1
|
[18] |
Wang C, Lu H, Wang Z, et al. 2009 Phys. Rev. Lett. 103 137801
|
[19] |
Helmy R, Kazakevich Y, Ni C Y, et al. 2005 J. Am. Chem. Soc. 127 12446
|
[20] |
James M, Darwish T A, Ciampi S, et al. 2011 Soft Matter 7 5309
|
[21] |
Mallamace F, Branca C, Broccio M, et al. 2007 Proc. Natl Acad. Sci. USA 104 18387
|
[22] |
Sun C Q, Zhang X, Zhou J, et al. 2013 J. Phys. Chem. Lett. 4 2565
|
[23] |
Faraday M 1860 Proc. R. Soc. London 10 440
|
[24] |
Thomson J 1860 Proc. R. Soc. London 10 151
|
[25] |
Hynninen T, Heinonen V, Dias C L, et al. 2010 Phys. Rev. Lett. 105 086102
|
[26] |
Zhang X, Huang Y, Sun P, et al. 2015 Sci. Rep. 5 13655
|
[27] |
Li Y and Somorjai G A 2007 J. Phys. Chem. C 111 9631
|
[28] |
Golecki I and Jaccard C 1977 Phys. Lett. A 63 374
|
[29] |
Guo J, Meng X, Chen J, et al. 2014 Nat. Mater. 13 184
|
[30] |
Nishizawa K, Kurahashi N, Sekiguchi K, et al. 2011 Phys. Chem. Chem. Phys. 13 413
|
[31] |
Winter B, Aziz E F, Hergenhahn U, et al. 2007 J. Chem. Phys. 126 124504
|
[32] |
Siefermann K R, Liu Y, Lugovoy E, et al. 2010 Nat. Chem. 2 274
|
[33] |
Park S, Moilanen D E and Fayer M D 2008 J. Phys. Chem. B 112 5279
|
[34] |
Kvlividze V I, Kiselev V F, Kurzaev A B, et al. 1974 Surf. Sci. 44 60
|
[35] |
Otsuki Y, Sugimoto T, Ishiyama T, et al. 2017 Phys. Rev. B 96 115405
|
[36] |
Smit W J and Bakker H J 2017 Angew. Chem. 129 15746
|
[37] |
Alduchov O A and Eskridge R E 1996 J. Appl. Meteorology 35 601
|
[38] |
Wark K 1988 Generalized Thermodynamic Relationships in the Thermodynamics (5th Edn.) (New York: McGraw-Hill, Inc)
|
[39] |
Branca C, Magazu S, Maisano G, et al. 2000 Physica B 291 180
|
[40] |
Park S, Odelius M and Gaffney K J 2009 J. Phys. Chem. B 113 7825
|
[41] |
Ren Z, Ivanova A S, Couchot-Vore D, et al. 2014 J. Phys. Chem. Lett. 5 1541
|
[42] |
Sellberg J A, Huang C, McQueen T A, et al. 2014 Nature 510 381
|
[43] |
Thämer M, De Marco L, Ramasesha K, et al. 2015 Science 350 78
|
[44] |
Ma R, Cao D, Zhu C, et al. 2020 Nature 577 60
|
[45] |
Zhang Z, Li D, Jiang W and Wang Z 2018 Adv. Phys.:X 3 1428915
|
[46] |
Xiong X M, Chen L, Zuo W L, et al. 2014 Chin. Phys. Lett. 31 076801
|
[47] |
Zhao M, Zheng W T, Li J C, et al. 2007 Phys. Rev. B 75 085427
|
[48] |
Zhang X, Huang Y, Ma Z, et al. 2015 Friction 3 294
|
[49] |
Pawlak Z, Urbaniak W and Oloyede A 2011 Wear 271 1745
|
[50] |
Trainoff S and Philips N 2009 water droplet dancing on water surfaces
|
[51] |
Zhang X, Sun P, Huang Y, et al. 2015 J. Phys. Chem. B 119 5265
|
[52] |
Slater B and Michaelides A 2019 Nat. Rev. Chem. 3 172
|
[53] |
Zhang X, Huang Y, Ma Z, et al. 2014 Phys. Chem. Chem. Phys. 16 22987
|
[54] |
Wilson K R, Schaller R D, Co D T, et al. 2002 J. Chem. Phys. 117 7738
|
[55] |
Zhang X, Huang Y, Ma Z, et al. 2014 Phys. Chem. Chem. Phys. 16 22995
|
[56] |
Mpemba E B and Osborne D G 1979 Phys. Edu. 14 410
|
[57] |
Zhou Y, Zhong Y, Gong Y, et al. 2016 J. Mol. Liq. 220 865
|
[58] |
Agarwal A, Ng W J and Liu Y 2011 Chemosphere 84 1175
|
[59] |
Chen C, Li J and Zhang X 2020 Commun. Theor. Phys. 72 037601
|
[60] |
Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 054501
|
[61] |
Zhang L J, Wang J, Luo Y, et al. 2014 Nucl. Sci. Tech. 25 060503
|
[62] |
Debenedetti P G 2003 J. Phys.:Condens. Matter 15 R1669
|
[63] |
Huang Y, Zhang X, Ma Z, et al. 2015 Coordination Chem. Rev. 285 109
|
[64] |
Verlet J R R, Bragg A E, Kammrath A, et al. 2005 Science 307 93
|
[65] |
Kahan T F, Reid J P and Donaldson D J 2007 J. Phys. Chem. A 111 11006
|
[66] |
Chaplin M Water structure and science
|
[67] |
Bragg A E, Verlet J R, Kammrath A, et al. 2004 Science 306 669
|
[68] |
Kammrath A, Griffin G, Neumark D, et al. 2006 J. Chem. Phys. 125 076101
|
[69] |
van der Post S T, Hsieh C S, Okuno M, et al. 2015 Nat Commun. 6 8384
|
[70] |
Harich S A, Hwang D W H, Yang X, et al. 2000 J. Chem. Phys. 113 10073
|
[71] |
Guo J, Lü J T, Feng Y, et al. 2016 Science 352 321
|
[72] |
Wang Y, Liu H, Lv J, et al. 2011 Nat. Commun. 2 563
|
[73] |
de Koning M, Antonelli A, da Silva A J, et al. 2006 Phys. Rev. Lett. 96 075501
|
[74] |
Yang X, Peng C, Li L, et al. 2019 Prog. Solid State Chem. 55 20
|
[75] |
Sun C Q, Zhang X and Zheng W T 2012 Chem. Sci. 3 1455
|
[76] |
Liu X J, Bo M L, Zhang X, et al. 2015 Chem. Rev. 115 6746
|
[77] |
Yoshimura Y, Stewart S T, Somayazulu M, et al. 2011 J. Phys. Chem. B 115 3756
|
[78] |
Huang Y, Zhang X, Ma Z, et al. 2013 Sci. Rep. 3 3005
|
[79] |
Sun C Q, Zhang X, Fu X, et al. 2013 J. Phys. Chem. Lett. 4 3238
|
[80] |
Medcraft C, McNaughton D, Thompson C D, et al. 2012 Astrophys. J. 758 17
|
[81] |
Medcraft C, McNaughton D, Thompson C D, et al. 2013 Phys. Chem. Chem. Phys. 15 3630
|
[82] |
Sun C Q 2007 Prog. Solid State Chem. 35 1
|
[83] |
Sun C Q 2020 Nanomaterials Science
|
[84] |
Sun C Q 2019 Solvation Dynamics:A Notion of Charge Injection (London:Springer Nature)
|
[85] |
Huang Y L, Zhang X, Ma Z S, et al. 2015 J. Phys. Chem. C 119 16962
|
[86] |
Day J and Beamish J 2007 Nature 450 853
|
[87] |
Sun H 1998 J. Phys. Chem. B 102 7338
|
[88] |
Wang B, Jiang W, Gao Y, et al. 2017 RSC Adv. 7 11680
|
[89] |
Sun C Q 2020 Electron and Phonon Spectrometrics (London:Springer Nature)
|
[90] |
Shi Y, Zhang Z, Jiang W, et al. 2017 Chem. Phys. Lett. 684 53
|
[91] |
Huang Y, Zhang X, Ma Z, et al. 2013 J. Phys. Chem. B 117 13639
|
[92] |
Omar M A 1993 Elementary Solid State Physics:Principles and Applications (New York:Addison-Wesley)
|
[93] |
Zhou L, Wang X, Shin H J, et al. 2020 J. Am. Chem. Soc.
|
[94] |
Gao S, Huang Y, Zhang X, et al. 2019 J. Phys. Chem. B 123 8512
|
[95] |
Peng Y, Yang Y, Sun Y, et al. 2019 J. Molecluar Liq. 276 688
|
[96] |
Pan L, Xu S, Liu X, et al. 2013 Surf. Sci. Rep. 68 418
|
[97] |
Krim J 2012 Adv. Phys. 61 155
|
[98] |
Bowden F and Hughes T 1939 Proc. Roy Soc. London A 172 280
|
[99] |
Gurney C 1949 Proc. Roy Soc. London A 62 639
|
[100] |
Fan Y B, Chen X, Yang L J, et al. 2009 J. Phys. Chem. B 113 11672
|
[101] |
Zhao G, Tan Q, Xiang L, et al. 2015 J. Chem. Phys. 143 104705
|
[102] |
http://wwwrscorg/images/nikola-bregovic-entry_tcm18-225169pdf
|
[103] |
Craig V S J 2011 Soft Matter 7 40
|
[104] |
Zhang X and Lohse D 2014 Biomicrofluidics 8 041301
|
[105] |
Nagata Y, Hama T, Backus E H, et al. 2019 Acc. Chemical Research 52 1006
|
[106] |
Erko M, Wallacher D, Hoell A, et al. 2012 Phys. Chem. Chem. Phys. 14 3852
|
[107] |
Alabarse F G, Haines J, Cambon O, et al. 2012 Phys. Rev. Lett. 109 035701
|
[108] |
Moro R, Rabinovitch R, Xia C, et al. 2006 Phys. Rev. Lett. 97 123401
|
[109] |
Qiu H and Guo W 2013 Phys. Rev. Lett. 110 195701
|
[110] |
Agrawal K V, Shimizu S, Drahushuk L W, et al. 2017 Nat. Nanotechnol. 12 267
|
[111] |
Singh D P and Singh J P 2013 Appl. Phys. Lett. 102 243112
|
[112] |
Jähnert S, Chávez F V, Schaumann G, et al. 2008 Phys. Chem. Chem. Phys. 10 6039
|
[113] |
Uysal A, Chu M, Stripe B, et al. 2013 Phys. Rev. B 88 035431
|
[114] |
Mezger M, Reichert H, Schoder S, et al. 2006 Proc. Natl Acad. Sci. USA 103 18401
|
[115] |
Schoch R B, Han J Y and Renaud P 2008 Rev. Mod. Phys. 80 839
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|