Abstract To promote the application of far-infrared technology, functional far-infrared devices with high performance are needed. Here, we propose a design scheme to develop a wide-incident-angle far-infrared absorber, which consists of a periodically semicircle-patterned graphene sheet, a lossless inter-dielectric spacer and a gold reflecting film. Under normal incidence for both TE- and TM-polarization modes, the bandwidth of 90% absorption of the proposed far-infrared absorber is ranging from 6.76 THz to 11.05 THz. The absorption remains more than 90% over a 4.29-THz broadband range when the incident angle is up to 50° for both TE- and TM-polarization modes. The peak absorbance of the absorber can be flexibly tuned from 10% to 100% by changing the chemical potential from 0 eV to 0.6 eV. The tunable broadband far-infrared absorber has promising applications in sensing, detection, and stealth objects.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200306) and the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).
Corresponding Authors:
Jiu-Sheng Li
E-mail: jshli@126.com
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.