Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050505    DOI: 10.1088/1674-1056/23/5/050505
GENERAL Prev   Next  

Generation of a novel spherical chaotic attractor from a new three-dimensional system

Sun Chang-Chun (孙常春), Zhao En-Liang (赵恩良), Xu Qi-Cheng (徐启程)
School of Science, Shenyang Jianzhu University, Shenyang 110168, China
Abstract  A new three-dimensional (3D) system is constructed and a novel spherical chaotic attractor is generated from the system. Basic dynamical behaviors of the chaotic system are investigated respectively. Novel spherical chaotic attractors can be generated from the system within a wide range of parameter values. The shapes of spherical chaotic attractors can be impacted by the variation of parameters. Finally, a simpler 3D system and a more complex 3D system with the same capability of generating spherical chaotic attractors are put forward respectively.
Keywords:  three-dimensional system      spherical chaotic attractor      chaos generation  
Received:  06 September 2013      Revised:  05 November 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Science Research Foundation of Liaoning Provincial Education Department, China (Grant No. L2013229).
Corresponding Authors:  Sun Chang-Chun     E-mail:  changchunsun@sina.com
About author:  05.45.Gg; 05.45.-a; 05.45.Pq

Cite this article: 

Sun Chang-Chun (孙常春), Zhao En-Liang (赵恩良), Xu Qi-Cheng (徐启程) Generation of a novel spherical chaotic attractor from a new three-dimensional system 2014 Chin. Phys. B 23 050505

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Rössler O E 1976 Phys. Lett. A 57 397
[3] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Syst. 33 1072
[4] Sprott J C 1994 Phys. Rev. E 50 R647
[5] Chen G R and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[6] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[7] Dong E Z, Chen Z P, Chen Z Q and Yuan Z Z 2009 Chin. Phys. B 18 2680
[8] Cang S, Qi G and Chen Z 2010 Nonlinear Dyn. 59 515
[9] Xue W, Qi G Y, Mu J J, Jia H Y and Guo Y L 2013 Chin. Phys. B 22 080504
[10] Yu F, Wang C H, Yin J W and Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese)
[11] Liu X Y 2009 Chin. Phys. Lett. 26 090504
[12] Dadras S, Momeni H R and Qi G 2010 Nonlinear Dyn. 62 391
[13] Yu F, Wang C H, Yin J W and Xu H 2011 Chin. Phys. B 20 110505
[14] Yu S, Tang W K S, Lü J and Chen G 2008 IEEE Trans. Circ. Syst. II 55 1168
[15] Yu S, Lü J, Chen G and Yu X 2011 IEEE Trans. Circ. Syst. II 58 314
[16] Zhou X, Wang C H and Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese)
[17] He S B, Sun K H and Zhu C X 2013 Chin. Phys. B 22 050506
[18] Luo M W, Luo X H and Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese)
[19] Sprott J C 2000 Phys. Lett. A 266 19
[20] Li D 2008 Phys. Lett. A 372 387
[21] Yang X S and Li Q 2003 Chaos Soliton. Fract. 18 25
[22] Li Q, Yang X S and Yang F 2003 Electronics Lett. 39 1306
[23] Lü J, Chen G, Yu X and Leung H 2004 IEEE Trans. Circ. Syst. I 51 2476
[24] Lü J, Han F, Yu X and Chen G 2004 Automatica 40 1677
[25] Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circ. Syst. I 53 149
[26] Lü J, Murali K, Sinha S, Leung H and Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234
[27] Yu S, Lü J, Leung H and Chen G 2005 IEEE Trans. Circ. Syst. I 52 1459
[28] Yu S, Lü J and Chen G 2007 Phys. Lett. A 364 244
[29] Zhang C and Yu S 2010 Phys. Lett. A 374 3029
[30] Lü J, Zhou T, Chen G and Yang X 2002 Chaos 12 344
[31] Lü J, Yu X and Chen G 2003 IEEE Trans. Circ. Syst. I 50 198
[32] Zheng Z, Lü J, Chen G, Zhou T and Zhang S 2004 Chaos Soliton Fract. 20 277
[33] Yu S, Lü J and Chen G 2007 IEEE Trans. Circ. Syst. I 54 2087
[34] Guo J, Xie G and Wang L 2009 Chaos Soliton. Fract. 40 2160
[35] Chen Q, Hong Y, Chen G and Zhong Q 2006 Phys. Lett. A 348 195
[36] Zhou T and Chen G 2004 Int. J. Bifurc. Chaos 14 1795
[1] Generation of countless embedded trumpet-shaped chaotic attractors in two opposite directions from a new three-dimensional system with no equilibrium point
Sun Chang-Chun (孙常春). Chin. Phys. B, 2014, 23(9): 090502.
[2] Generation of transient chaos from two-dimensional systems via a switching approach
Sun Chang-Chun (孙常春), Xu Qi-Cheng (徐启程), Sui Ying (隋英). Chin. Phys. B, 2013, 22(3): 030507.
[3] Experimental investigation on chaos generation in erbium-doped fiber single-ring lasers
Chang Feng (常锋), Feng Yu-Ling (冯玉玲), Yao Zhi-Hai (姚治海), Fan Jian (范健), Song Yuan-Chao (宋远超), Zhao Yu-Zhu (赵玉柱). Chin. Phys. B, 2012, 21(10): 100504.
[4] Chaotification for a class of nonlinear systems
Liu Na(刘娜) and Guan Zhi-Hong(关治洪). Chin. Phys. B, 2009, 18(5): 1769-1773.
[5] The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system
Wang Jie-Zhi (王杰智), Chen Zeng-Qiang (陈增强), Yuan Zhu-Zhi (袁著祉). Chin. Phys. B, 2006, 15(6): 1216-1225.
No Suggested Reading articles found!