Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090502    DOI: 10.1088/1674-1056/23/9/090502
GENERAL Prev   Next  

Generation of countless embedded trumpet-shaped chaotic attractors in two opposite directions from a new three-dimensional system with no equilibrium point

Sun Chang-Chun
School of Science, Shenyang Jianzhu University, Shenyang 110168, China
Abstract  A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directions are generated from the system as time goes on. The basic dynamical behaviors of the strange chaotic system are investigated. Another more complex 3D system with the same capability of generating countless embedded trumpet-shaped chaotic attractors is also put forward.
Keywords:  three-dimensional system      trumpet-shaped chaotic attractor      equilibrium point  
Received:  18 December 2013      Revised:  27 February 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Science Research Foundation of Liaoning Provincial Education Department, China (Grant No. L2013229).
Corresponding Authors:  Sun Chang-Chun     E-mail:  changchunsun@sina.com

Cite this article: 

Sun Chang-Chun (孙常春) Generation of countless embedded trumpet-shaped chaotic attractors in two opposite directions from a new three-dimensional system with no equilibrium point 2014 Chin. Phys. B 23 090502

[1] Yin S, Ding S X, Haghani A, Hao H and Zhang P 2012 J. Process Control 22 1567
[2] Yin S, Luo H and Ding S X 2014 IEEE Trans. Ind. Electron. 61 2402
[3] Zhu D R, Liu C X and Yan B N 2012 Chin. Phys. B 21 090509
[4] Zhang R X and Yang S P 2012 Chin. Phys. B 21 080505
[5] Wang Z and Sun W 2013 Acta Phys. Sin. 62 020511 (in Chinese)
[6] Lü L, Yu M, Wei L L, Zhang M and Li Y S 2012 Chin. Phys. B 21 100507
[7] Zhou X Y 2012 Acta Phys. Sin. 61 030504 (in Chinese)
[8] Li G L and Chen X Y 2011 Acta Phys. Sin. 60 090508 (in Chinese)
[9] Lorenz E N 1963 J. Atmos. Sci. 20 130
[10] Chen G R and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[11] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[12] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Sys. 33 1072
[13] Dadras S, Momeni H R and Qi G 2010 Nonlinear Dyn. 62 391
[14] Yu F, Wang C H, Yin J W and Xu H 2011 Chin. Phys. B 20 110505
[15] Dong E Z, Chen Z P, Chen Z Q and Yuan Z Z 2009 Chin. Phys. B 18 2680
[16] Cang S, Qi G and Chen Z 2010 Nonlinear Dyn. 59 515
[17] Liu X Y 2009 Chin. Phys. Lett. 26 090504
[18] Yu F, Wang C H, Yin J W and Xu H 2012 Acta Phys. Sin. 61 020506 (in Chinese)
[19] Yu S, Tang W K S, Lü J and Chen G 2008 IEEE Trans. Circ. Sys. II 55 1168
[20] He S B, Sun K H and Zhu C X 2013 Chin. Phys. B 22 050506
[21] Luo M W, Luo X H and Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese)
[22] Zhou X, Wang C H and Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese)
[23] Sprott J C 2000 Phys. Lett. A 266 19
[24] Li D 2008 Phys. Lett. A 372 387
[25] Yang X S and Li Q 2003 Chaos Soliton. Fract. 18 25
[26] Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circ. Sys. I 53 149
[27] Yu S, Lü J and Chen G 2007 Phys. Lett. A 364 244
[28] Zhang C and Yu S 2010 Phys. Lett. A 374 3029
[29] Ai X X, Sun K H and He S B 2014 Acta Phys. Sin. 63 040503 (in Chinese)
[30] Lü J, Zhou T, Chen G and Yang X 2002 Chaos 12 344
[31] Zheng Z, Lü J, Chen G, Zhou T and Zhang S 2004 Chaos Soliton. Fract. 20 277
[32] Yu S, Lü J and Chen G 2007 IEEE Trans. Circ. Sys. I 54 2087
[33] Guo J, Xie G and Wang L 2009 Chaos Soliton. Fract. 40 2160
[34] Chen Q, Hong Y, Chen G and Zhong Q 2006 Phys. Lett. A 348 195
[35] Zhou T and Chen G 2004 Int. J. Bifurc. Chaos 14 1795
[36] Sprott J C 1994 Phys. Rev. E 50 R647
[1] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[2] Generation of a novel spherical chaotic attractor from a new three-dimensional system
Sun Chang-Chun (孙常春), Zhao En-Liang (赵恩良), Xu Qi-Cheng (徐启程). Chin. Phys. B, 2014, 23(5): 050505.
[3] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
No Suggested Reading articles found!