Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 088501    DOI: 10.1088/1674-1056/28/8/088501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improving robustness of GGNMOS with P-base layer for electrostatic discharge protection in 0.5-μm BCD process

Fei Hou(侯飞)1, Ruibo Chen(陈瑞博)2, Feibo Du(杜飞波)1, Jizhi Liu(刘继芝)1, Zhiwei Liu(刘志伟)1, Juin J Liou(刘俊杰)2
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  Gate-grounded N-channel MOSFET (GGNMOS) has been extensively used for on-chip electrostatic discharge (ESD) protection. However, the ESD performance of the conventional GGNMOS is significantly degraded by the current crowding effect. In this paper, an enhanced GGNMOS with P-base layer (PB-NMOS) are proposed to improve the ESD robustness in BCD process without the increase in layout area or additional layer. TCAD simulations are carried out to explain the underlying mechanisms of that utilizing the P-base layer can effectively restrain the current crowing effect in proposed devices. All devices are fabricated in a 0.5-μm BCD process and measured using the transmission line pulsing (TLP) tester. Compared with the conventional GGNMOS, the proposed PB-NMOS devices offer a higher failure current than its conventional counterpart, which can be increased by 15.38%. Furthermore, the PB-NMOS_type3 possesses a considerably lower trigger voltage than the conventional GGNMOS to protect core circuit effectively.
Keywords:  ESD      GGNMOS      failure current      trigger voltage  
Received:  28 March 2019      Revised:  15 May 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
Corresponding Authors:  Zhiwei Liu     E-mail:  ziv_liu@hotmail.com

Cite this article: 

Fei Hou(侯飞), Ruibo Chen(陈瑞博), Feibo Du(杜飞波), Jizhi Liu(刘继芝), Zhiwei Liu(刘志伟), Juin J Liou(刘俊杰) Improving robustness of GGNMOS with P-base layer for electrostatic discharge protection in 0.5-μm BCD process 2019 Chin. Phys. B 28 088501

[1] Wang A 2002 On-Chip ESD Protection For Integrated Circuits (Boston: Springer) pp. 51-59
[2] Leroux C, Buj C and Chnate J P 1995 Proceedings of the 25th European Solid State Device Research Conference, September 25-27, 1995, Hague, Netherlands, p. 321
[3] Song B, Han Y, Li M, Dong S, Guo W, Huang D, Ma F and Miao M 2010 Electron. Lett. 46 518
[4] Zhou Z, Jin X and Wang Y 2016 Proceedings of the 13th IEEE International Conference on Solid-state & Integrated Circuit Technology, October 25-28, 2016, Hangzhou, China, p. 1
[5] Kim C, Park H, Kim Y, Kang D, Lee M, Lee S, Jeon C, Kim H, Yoo Y and Yoon H 2000 Proceedings of the IEEE Electrical Overstress/Electrostatic Discharge Symposium, September 26-28, 2000, Anaheim, USA, p. 26
[6] Li J, Alvarez D, Chatty K, Abou-khalil M J, Gauthier R, Russ C, Seguin C and Halbach R 2006 Proceedings of the 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, July 3-7, 2006, Singapore, Singapore, p. 276
[7] Chaing C, Chang P, Tseng P, Lai P, Tang T and Su K 2016 Proceedings of the IEEE International Reliability Physics Symposium, April 17-21, 2016, Pasadena, USA, p. EL.3.1
[8] Chatty K, Chatty K, Alvarez D, Gauthier R, Russ C, Abou-Khalil M and Kwon B J 2007 Proceedings of the 29th Electrical Overstress/Electrostatic Discharge Symposium, September 16-21, 2007, Anaheim, USA, p. 7A.2-1
[9] Wang C, Chen Y, Tang T and Su K 2013 Proceedings of the IEEE International Reliability Physics Symposium, April 14-18, 2013, Anaheim, USA, p. EL.3.1
[10] Alvarez D, Abou-Khalil M J, Russ C, Chatty K, Gauthier R, Kontos D, Li J, Seguin C and Halbach R 2006 Microelectron. Rel. 46 1597
[11] Haken R A, Havemann R H, Eklund R H and Hutter L N 1990 BiCMOS Technology and Applications (Boston: Springer) pp. 63-64
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[3] Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures
Jia-Xin Wang(王加鑫), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Duo-Li Li(李多力), Lin-Chun Gao(高林春), Jiang-Jiang Li(李江江), Bo Li(李博), Zheng-Sheng Han(韩郑生), and Jia-Jun Luo(罗家俊). Chin. Phys. B, 2021, 30(7): 078501.
[4] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[5] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[6] New embedded DDSCR structure with high holding voltage and high robustness for 12-V applications
Jie-Yu Li(李婕妤), Yang Wang(汪洋)†, Dan-Dan Jia(夹丹丹), Wei-Peng Wei(魏伟鹏), and Peng Dong(董鹏). Chin. Phys. B, 2020, 29(10): 108501.
[7] High holding voltage SCR for robust electrostatic discharge protection
Zhao Qi(齐钊), Ming Qiao(乔明), Yitao He(何逸涛), Bo Zhang(张波). Chin. Phys. B, 2017, 26(7): 077304.
[8] Structure-dependent behaviors of diode-triggered silicon controlled rectifier under electrostatic discharge stress
Li-Zhong Zhang(张立忠), Yuan Wang(王源), Yan-Dong He(何燕冬). Chin. Phys. B, 2016, 25(12): 128501.
[9] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[10] A novel diode string triggered gated-PiN junction device for electrostatic discharge protection in 65-nm CMOS technology
Zhang Li-Zhong (张立忠), Wang Yuan (王源), Lu Guang-Yi (陆光易), Cao Jian (曹健), Zhang Xing (张兴). Chin. Phys. B, 2015, 24(10): 108503.
[11] Relation between initial conditions and entanglement sudden death for two-qubit extended Werner-like states
Yang Bai-Yuan (杨百元), Fang Mao-Fa (方卯发), Huang Jiang (黄江). Chin. Phys. B, 2013, 22(8): 080303.
[12] Eavesdropping on the quantum dialogue protocol in lossy channel
Liu Heng(刘恒), Zhang Xiu-Lan(张秀兰), and Lü Hui(吕辉) . Chin. Phys. B, 2011, 20(7): 070305.
[13] Quantum secure direct communication protocol with blind polarization bases and particles' transmitting order
Song Jie(宋杰), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿). Chin. Phys. B, 2007, 16(3): 621-623.
[14] Eavesdropping on the `ping-pong' quantum communication protocol freely in a noise channel
Deng Fu-Guo(邓富国), Li Xi-Han(李熙涵), Li Chun-Yan(李春燕), Zhou Ping(周萍), and Zhou Hong-Yu(周宏余). Chin. Phys. B, 2007, 16(2): 277-281.
No Suggested Reading articles found!