CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Organic field-effect transistor floating-gate memory using polysilicon as charge trapping layer |
Wen-Ting Zhang(张文婷)1,2, Fen-Xia Wang(王粉霞)1, Yu-Miao Li(李玉苗)1, Xiao-Xing Guo(郭小星)1, Jian-Hong Yang(杨建红)1 |
1 Institute of Microelectronics, Lanzhou University, Lanzhou 730000, China; 2 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract In this study, we present an organic field-effect transistor floating-gate memory using polysilicon (poly-Si) as a charge trapping layer. The memory device is fabricated on a N+-Si/SiO2 substrate. Poly-Si, polymethylmethacrylate, and pentacene are used as a floating-gate layer, tunneling layer, and active layer, respectively. The device shows bidirectional storage characteristics under the action of programming/erasing (P/E) operation due to the supplied electrons and holes in the channel and the bidirectional charge trapping characteristic of the poly-Si floating-gate. The carrier mobility and switching current ratio (Ion/Ioff ratio) of the device with a tunneling layer thickness of 85 nm are 0.01 cm2·V-1·s-1 and 102, respectively. A large memory window of 9.28 V can be obtained under a P/E voltage of ±60 V.
|
Received: 10 April 2019
Revised: 27 May 2019
Accepted manuscript online:
|
PACS:
|
68.35.bm
|
(Polymers, organics)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
73.40.Gk
|
(Tunneling)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
Corresponding Authors:
Jian-Hong Yang
E-mail: yangjh@lzu.edu.cn
|
Cite this article:
Wen-Ting Zhang(张文婷), Fen-Xia Wang(王粉霞), Yu-Miao Li(李玉苗), Xiao-Xing Guo(郭小星), Jian-Hong Yang(杨建红) Organic field-effect transistor floating-gate memory using polysilicon as charge trapping layer 2019 Chin. Phys. B 28 086801
|
[1] |
Wang W, Han J, Ying J and Xie W 2014 IEEE. T. Electron. Dev. 61 3507
|
[2] |
Wang G, Liu X and Wang W 2018 IEEE. T. Electron. Dev. 39 111
|
[3] |
Xu M, Guo S, Xu T, Xie W and Wang W 2019 Org. Electron. 64 62
|
[4] |
Kim Y N, Lee N H, Yun D Y and Kim D W 2015 Org. Electron. 25 165
|
[5] |
Meng L Q, Lan M H, Guo L, Xie L S, Wang H, Ge J C, Liu W M, Wang Y and Wang P F 2015 RSC. Adv. 5 26886
|
[6] |
Han J H, Wang W, Ying J and Xie W F 2014 Appl. Phys. Lett. 104 013302
|
[7] |
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K and Takamiya M 2009 Science 326 1516
|
[8] |
Xu M, Guo S, Xiang L, Xu T, Xie W and Wang W 2018 IEEE. T. Electron. Dev. 65 1113
|
[9] |
Ying J, Han J, Xiang L, Wang W and Xie W 2015 Curr. Appl. Phys. 15 770
|
[10] |
Zhou Y, Han S T, Sonar P and Roy V A L 2013 Sci. Rep-uk 3 2319
|
[11] |
Zhou L, Mao J, Ren Y, Han S T, Roy V A L and Zhou Y 2018 Small 14 1703126
|
[12] |
Wang K, Ling H, Bao Y, Yang M, Yang Y, Hussain M, Wang H, Zhang L, Xie L, Yi M, Xie X and Zhu J 2018 Adv. Mater. 30 1800595
|
[13] |
Wang S M, Leung C W and Chan P K L 2010 Appl. Phys. Lett. 97 023511
|
[14] |
Gupta R K, Kusuma D Y, Lee P S and Srinivasan M P 2012 Mater. Lett. 68 287
|
[15] |
Haik M Y, Ayesh A I, Abdulrehman T and Haik Y 2014 Mater. Lett. 124 67
|
[16] |
Ji Y, Kim J, Cha A N, Lee S A, Lee M W, Suh J S, Bae S, Moon B J, Lee S H, Lee D S, Wang G and Kim T W 2016 Nanotechnology 27 145204
|
[17] |
Alaabdlqader H S, Sleiman A, Sayers P and Mabrook M F 2015 IET Cir. Device. Syst. 9 67
|
[18] |
Chang H C, Lu C, Liu C L and Chen W C 2015 Adv. Mater. 27 27
|
[19] |
Kang M, Kim Y A, Yun J M, Khim D, Kim J, Noh Y Y, Baeg K J and Kim D Y 2014 Nanoscale 6 12315
|
[20] |
Cheng S W, Chien Y H C, Huang T Y, Liu C L and Liou G S 2018 Polymer 148 382
|
[21] |
Kim R H, Lee J, Kim K L, Cho S M, Kim D H and Park C 2017 Small 13 1603971
|
[22] |
Bhattacharjee S, Sarkar P K, Prajapat M and Roy A 2017 J. Phys. Appl. Phys. 50 265103
|
[23] |
Lee K H, Tsai J R, Chang R D, Lin H C and Huang T Y 2013 Appl. Phys. Lett. 103 153102
|
[24] |
Wang W, Han J H, Ying J, Xiang L Y and Xie W F 2014 Appl. Phys. Lett. 105 123303
|
[25] |
Yi M, Shu J, Wang Y, Yi M, Shu J, Wang Y, Ling H, Song C, Li W, Xie L and Huang W 2016 Org. Electron. 33 95
|
[26] |
Liu Z, Xue F, Su Y, Lvov Y M and Varahramyan K 2006 IEEE T Nanotechnol 5 379
|
[27] |
Yan Z W, Wang J, Qiao J L, Chen W J, Yang P, Xiao T and Yang J H 2016 Chin. Phys. B 25 067103
|
[28] |
Guo Y L, Di C A, Ye S H, Sun X M, Zheng J, Wen Y G, Wu W P, Yu G and Liu Y Q 2009 Adv. Mater. 21 1954
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|