Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124301    DOI: 10.1088/1674-1056/22/12/124301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Investigation of long-range sound propagation in surface ducts

Duan Rui (段睿), Yang Kun-De (杨坤德), Ma Yuan-Liang (马远良)
Institute of Acoustic Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Abstract  Understanding the effect of source-receiver geometry on sound propagation in surface ducts can improve the performance of near-surface sonar in deep water. The Lloyd-mirror and normal mode theories are used to analyze the features of surface-duct propagation in this paper. Firstly, according to the Lloyd-mirror theory, a shallow point source generates directional lobes, whose grazing angles are determined by the source depth and frequency. By assuming a part of the first lobe to be just trapped in the surface duct, a method to calculate the minimum cutoff frequency (MCF) is obtained. The presented method is source depth dependent and thus is helpful for determining the working depth for sonar. Secondly, it is found that under certain environments there exists a layer of low transmission loss (TL) in the surface duct, whose thickness is related to the source geometry and can be calculated by the Lloyd-mirror method. The receiver should be placed in this layer to minimize the TL. Finally, the arrival angle on a vertical linear array (VLA) in the surface duct is analyzed based on normal mode theory, which provides a priori knowledge of the beam direction of passive sonar.
Keywords:  surface duct      source-receiver geometry      Lloyd-mirror      normal mode  
Received:  20 January 2013      Revised:  11 March 2013      Accepted manuscript online: 
PACS:  43.30.Cq (Ray propagation of sound in water)  
  43.30.Bp (Normal mode propagation of sound in water)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174235), the Science and Technology Development Project of Shaanxi Province, China (Grant No. 2010KJXX-02), the Science and Technology Innovation Foundation of Northwestern Polytechnical University of China, and the Doctorate Foundation of Northwestern Polytechnical University, China (Grant No. CX201226).
Corresponding Authors:  Yang Kun-De     E-mail:  ykdzym@nwpu.edu.cn

Cite this article: 

Duan Rui (段睿), Yang Kun-De (杨坤德), Ma Yuan-Liang (马远良) Investigation of long-range sound propagation in surface ducts 2013 Chin. Phys. B 22 124301

[1] Mercer J A, Howe B M, Andrew R K, Wolfson M A, Worcester P F, Dzieciuch M A and Colosi J A 2006 J. Acoust. Soc. Am. 120 3020
[2] Grigorieva N S, Fridman G M, Mercer J A, Andrew R K, Wolfson M A, Howe B M and Colosi J A 2009 J. Acoust. Soc. Am. 125 1919
[3] Van Uffelen L J, Worcester P F, Dzieciuch M A, Rudnick D L and Colosi J A 2010 J. Acoust. Soc. Am. 127 2169
[4] Duan R, Yang K D, Ma Y L and Hu T 2012 Acta. Oceanol. Sin. 31 19
[5] Baker W F 1975 J. Acoust. Soc. Am. 57 1198
[6] Schulkin M 1968 J. Acoust. Soc. Am. 44 1152
[7] Labianca F M 1973 J. Acoust. Soc. Am. 53 1137
[8] Murphy E L and Davis J A 1974 J. Acoust. Soc. Am. 56 1747
[9] Porter M B and Jensen F B 1993 J. Acoust. Soc. Am. 94 1510
[10] Porter M B, Piacsek S, Henderson L and Jensen F B 1993 Surface Duct Propagation and the Ocean Mixed Layer in Oceanography and Acoustics Prediction and Propagation Models (New York: AIP)
[11] Ying Y Z, Ma L and Guo S M 2011 Chin. Phys. B 20 054301
[12] Li X G, Yang K D and Wang Y 2011 Chin. Phys. B 20 074301
[13] Zhang T W, Yang K D and Ma Y L 2010 Chin. Phys. B 19 124301
[14] Ma J, Gao C and Tan L Y 2007 Chin. Phys. 16 1327
[15] Porter M B 1992 The KRAKEN Normal Mode Program, DTIC Document
[16] Urick R J 1983 Principles of Underwater Sound, 3rd edn. (New York: McGraw-Hill)
[17] Jensen F B, Kuperman W A, Porter M B and Schmidt H 1994 Computational Ocean Acoustics (New York: AIP)
[18] Wang N and Liu J Z 2002 Chin. Phys. 11 456
[1] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[2] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[3] A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water
Yu-Bo Qi(戚聿波), Shi-Hong Zhou(周士弘), Meng-Xiao Yu(于梦枭), Shu-Yuan Du(杜淑媛), Mei Sun(孙梅), Ren-He Zhang(张仁和). Chin. Phys. B, 2019, 28(5): 054302.
[4] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[5] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[6] Spatial correlation of the high intensity zone in deep-water acoustic field
Jun Li(李鋆), Zheng-Lin Li(李整林), Yun Ren(任云). Chin. Phys. B, 2016, 25(12): 124310.
[7] The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium
Ahmed E. Abouelregal, Ashraf M. Zenkour. Chin. Phys. B, 2013, 22(10): 108102.
[8] Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem
Kh. Lotfy . Chin. Phys. B, 2012, 21(1): 014209.
[9] Determining the long living quasi-normal modes of relativistic stars
Lü Jun-Li(吕君丽) and Suen Wai-Mo(孙纬武) . Chin. Phys. B, 2011, 20(4): 040401.
[10] Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator
Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武) . Chin. Phys. B, 2011, 20(12): 124203.
[11] Quasinormal modes of the scalar field in five-dimensional Lovelock black hole spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2010, 19(6): 060401.
[12] Asymptotic quasinormal modes of scalar field in a gravity's rainbow
Liu Cheng-Zhou(刘成周) and Zhu Jian-Yang(朱建阳). Chin. Phys. B, 2009, 18(10): 4161-4168.
[13] Quasinormal modes of a stationary axisymmetric EMDA black hole
Pan Qi-Yuan (潘启沅), Jing Ji-Liang (荆继良). Chin. Phys. B, 2006, 15(1): 77-82.
[14] Gravitational quasinormal modes of the Reissner--Nordström de Sitter black hole
Jing Ji-Liang (荆继良), Chen Song-Bai (陈松柏). Chin. Phys. B, 2005, 14(4): 683-689.
[15] Overtone spectrum of SiH stretching in H2SiCl2
Chen Ping (陈平), Zhu Huai (朱淮), Hao Lu-Yuan (郝绿原), Hu Shui-Ming (胡水明), Liu An-Wen (刘安雯), Zheng Jing-Jing (郑晶晶), Ding Yun (丁昀). Chin. Phys. B, 2005, 14(3): 634-641.
No Suggested Reading articles found!