Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054303    DOI: 10.1088/1674-1056/28/5/054303
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel multi-cavity Helmholtz muffler

Han-Bo Shao(邵瀚波), Huan He(何欢), Yan Chen(陈岩), Guo-Ping Chen(陈国平)
State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhibit negative mass density in low frequency, and the muffling frequency can be adjusted when we change the internal structure of the cavity, which will be very attractive for noise control. In this paper, we investigate the influence of the membranes and the cavities on noise reduction characteristics with theoretical calculations and simulations. The results show that the numbers of membranes and the volumes of the cavities can have a great effect on the position of the muffling frequency. The number of cavities can have a great effect on the width of the muffling frequency (reduce the noise by 10 dB). With different combinations of the membranes and cavities, we can get different muffling frequencies, which can meet different muffling demands in practical applications and is more flexible than the traditional Helmholtz cavity.
Keywords:  multi-cavity      Helmholtz muffler      negative mass density      noise reduction  
Received:  14 January 2019      Revised:  13 March 2019      Accepted manuscript online: 
PACS:  43.50.+y (Noise: its effects and control)  
  43.40.+s (Structural acoustics and vibration)  
  43.30.+m (Underwater sound)  
Fund: Project supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX18_0249).
Corresponding Authors:  Huan He     E-mail:  hehuan@nuaa.edu.cn

Cite this article: 

Han-Bo Shao(邵瀚波), Huan He(何欢), Yan Chen(陈岩), Guo-Ping Chen(陈国平) A novel multi-cavity Helmholtz muffler 2019 Chin. Phys. B 28 054303

[1] Stefanick T 1988 Sci. Am. 258 41
[2] Brink K H 1983 J. Phys. Oceanography 13 103
[3] Zhong L 2010 J. Wuhan University Technol. (Mater. Sci. Ed.). 25 272
[4] Zhu Y W, Zhu F W, Zhang Y S, et al. 2017 Appl. Acoust. 116 9
[5] Hassan A M, Alrashdan A, Hayajneh M T, et al. 2009 J. Mater. Process. Technol. 209 894
[6] Liu Z, Chan C T and Sheng P 2005 Phys. Rev. B 71 014103
[7] Sigalas M M and Economou E N 1992 J. Sound Vib. 158 377
[8] Yariv A and Mookherjea S 2002 International Journal of High Speed Electronics and Systems 12 207
[9] Sheng P, Zhang X X, Liu Z, et al. 2012 Science 338 201
[10] Mei J, Ma G, Yang M, et al. 2007 Phys. B Phys. Condens. Matter 394 256
[11] Wang Y F, Wang Y S and Laude V 2015 Phys. Rev. B 92 104110
[12] Mei J, Liu Z, Wen W, et al. 2007 Phys. Rev. B Condens. Matter 76 134205
[13] Zhang L, Qiao W, Chen L, et al. 2014 Optik - Int. J. For Light Electron. Opt. 125 1354
[14] Fang N, Xi D, Xu J, et al. 2006 Nat. Mater. 5 452
[15] Ding C L and Zhao X P 2009 Acta Phys. Sin. 58 6351 (in Chinese)
[16] Lee S H, Park C M, Seo Y M, et al. 2010 Phys. Rev. Lett. 104 054301
[17] Shen H J, Wen J H, Païdoussis M P, et al. 2012. Phys. Lett. A 376 3351
[18] Ding Y, Liu Z, Qiu C, et al. 2007 Phys. Rev. Lett. 99 093904
[19] Liu G R, Nguyen-Thoi T, Nguyen-Xuan H, et al. 2009 Comput. & Struct. 87 14
[1] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[2] Use of a plane jet for flow-induced noise reduction of tandem rods
Kun Zhao(赵鲲), Xi-xiang Yang(杨希祥), Patrick N Okolo, Wei-hua Zhang(张为华). Chin. Phys. B, 2016, 25(6): 064301.
[3] Analysis and experiments of self-injection magnetron
Yi Zhang(张益), Wen-Jun Ye(叶文军), Ping Yuan(袁萍), Huan-Cheng Zhu(朱铧丞), Yang Yang(杨阳), Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2016, 25(4): 048402.
[4] Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
Wu Shao-Hua (吴少华), Du Li-Dong (杜利东), Kong De-Yi (孔德义), Ping Hao-Yue (平皓月), Fang Zhen (方震), Zhao Zhan (赵湛). Chin. Phys. B, 2014, 23(4): 044302.
[5] Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭). Chin. Phys. B, 2010, 19(7): 070516.
[6] Noise reduction method based on weighted manifold decomposition
Gan Jian-Chao (甘建超), Xiao Xian-Ci (肖先赐). Chin. Phys. B, 2004, 13(3): 312-316.
No Suggested Reading articles found!