|
|
Collision of cold CaF molecules: Towards evaporative cooling |
Yuefeng Gu(顾跃凤)1, Yunxia Huang(黄云霞)1, Chuanliang Li(李传亮)2, Xiaohua Yang(杨晓华)1,3 |
1 School of Science, Nantong University, Nantong 226019, China;
2 Department of Physics, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China;
3 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract Long range intermolecular interaction potential surface of CaF (2Σ+) was simulated by employing the MOLPRO program and using the RCCSD(T)/def2-TZVP theory. The predicted data were further fitted to obtain the collision cross-section. The elastic collision cross-section of CaF at the temperature around 2 mK is as high as 6.5×10-9 cm2 and the collision rate is over 4.1×106 Hz. Additionally, we found that an orientation electric field will simplify the intermolecular interaction potential function from quaternary into ternary and the collision cross-section will be raised by about three orders. All-optical evaporative cooling of cold CaF is discussed in the conclusion.
|
Received: 14 November 2018
Revised: 18 December 2018
Accepted manuscript online:
|
PACS:
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604164 and U1810129), the Fund for Shanxi “1331 Project” Key Innovation Research Team, China (Grant No. 1331KIRT), and Excellent Youth Academic Leader in Higher Education of Shanxi Province, China (2018). |
Corresponding Authors:
Xiaohua Yang
E-mail: xhyang@ntu.edu.cn
|
Cite this article:
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华) Collision of cold CaF molecules: Towards evaporative cooling 2019 Chin. Phys. B 28 033401
|
[1] |
van der Poel A P P, Zieger P C, van de Meerakker S Y T, Loreau J, van der Avoird A and Bethlem H L 2018 Phys. Rev. Lett. 120 033402
|
[2] |
Stuhl B K, Hummon M T and Ye J 2014 Annu. Rev. Phys. Chem. 65 501
|
[3] |
Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001
|
[4] |
Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A L, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
|
[5] |
Chae E, Anderegg L, Augenbraun B L, Ravi A, Hemmerling B, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2017 New J. Phys. 19 033035
|
[6] |
Anderegg L, Augenbraun B L, Bao Y C, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890
|
[7] |
Kajita M, Suzuki T, Odashima H, Moriwaki Y and Tachikawa M 2001 Jpn. J. Appl. Phys. 40 L1260
|
[8] |
Kajita M 2004 Eur. Phys. J. D 31 39
|
[9] |
Kajita M 2006 Phys. Rev. A 74 032710
|
[10] |
Dhont G S F, van Lenthe J H, Groenenboom G C and van der Avoird A 2005 J. Chem. Phys. 123 184302
|
[11] |
Childs W J, Goodman G L and Goodman L S 1981 J. Mol. Spectrosc. 86 365
|
[12] |
Werner H J, Knowles P J, Knizia G, Manby F R, et al. 2010 MOLPRO (version 2010.1, a package of ab initio programs)
|
[13] |
Boys S F and Bernardi F 1970 Mol. Phys. 19 553
|
[14] |
Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
|
[15] |
Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
|
[16] |
Knowles P J, Hampel C and Werner H J 2000 J. Chem. Phys. 112 3106
|
[17] |
Janssen L M C, Groenenboom G C, van der Avoird A, Žuchowski P S and Podeszwa R 2009 J. Chem. Phys. 131 224314
|
[18] |
Janssen L M C, Żuchowski P S, van der Avoird A and Hutson J M 2011 J. Chem. Phys. 134 124309
|
[19] |
Janssen L M C, Żuchowski P S, van der Avoird A and Hutson J M 2011 Phys. Rev. A 83 022713
|
[20] |
DeMille D, Glenm D R and Petricka J 2004 Eur. Phys. J. D 31 375
|
[21] |
Childs W J, Goodman L S, Nielsen U and Pfeufer V 1984 J. Chem. Phys. 80 2283
|
[22] |
Avdeenkov A V and Bohn J L 2001 Phys. Rev. A 64 052703
|
[23] |
Fieid R W, Harris D O and Tanaka T 1975 J. Mol. Spectrosc. 57 107
|
[24] |
Huang Y X, Xu S W and Yang X H 2012 Acta. Phys. Sin. 61 243701 (in Chinese)
|
[25] |
Huang Y X, Xu S W and Yang X H 2013 Chin. Phys. B 22 053701
|
[26] |
Sharma M K, Sharma M and Chandra S 2015 Commun. Theor. Phys. 64 731
|
[27] |
Neese F 2012 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 73
|
[28] |
Ticknor C 2008 Phys. Rev. Lett. 100 133202
|
[29] |
Sun H, Wang Z X, Wang Q, Li X J, Liu J P and Yin J P 2015 Chin. Phys. B 24 113101
|
[30] |
Davis K B, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155
|
[31] |
Hutson J M 1994 MOLSCAT computer code, distributed by Collaborative Computetional Project No. 6 of the Engineering and Physical Sciences Research Council (UK), version 14
|
[32] |
González-Martínez M L and Hutson J M 2007 Phys. Rev. A 75 022702
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|