Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088504    DOI: 10.1088/1674-1056/27/8/088504
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers

Li-Wen Cheng(程立文)1,4, Jian Ma(马剑)1, Chang-Rui Cao(曹常锐)1, Zuo-Zheng Xu(徐作政)1, Tian Lan(兰天)2, Jin-Peng Yang(杨金彭)1, Hai-Tao Chen(陈海涛)1, Hong-Yan Yu(于洪岩)2, Shu-Dong Wu(吴曙东)1, Shun Yao(尧舜)3, Xiang-Hua Zeng(曾祥华)1, Zai-Quan Xu(徐仔全)5
1 College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China;
2 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China;
3 Sino-Semiconductors Technologies Co., Ltd., Taizhou 225300, China;
4 Jiangsu Kinzo Opto-electronic Instrument Co., Ltd., Yangzhou 225100, China;
5 School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
Abstract  

In this study, an InGaN lighting-emitting diode (LED) containing GaN/AlGaN/GaN triangular barriers is proposed and investigated numerically. The simulation results of output performance, carrier concentration, and radiative recombination rate indicate that the proposed LED has a higher output power and an internal quantum efficiency, and a lower efficiency droop than the LED containing conventional GaN or AlGaN barriers. These improvements mainly arise from the modified energy bands, which is evidenced by analyzing the LED energy band diagram and electrostatic field near the active region. The modified energy bands effectively improve carrier injection and confinement, which significantly reduces electron leakage and increases the rate of radiative recombination in the quantum wells.

Keywords:  lighting-emitting diode      gallium nitride      efficiency droop      triangular barrier  
Received:  10 April 2018      Revised:  18 May 2018      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0403100 and 2017YFB0403101), the National Natural Science Foundation of China (Grant Nos. 61404114, 61504119, and 11004170), the China Postdoctoral Science Foundation (Grant No. 2017M611923), and the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1701067B).

Corresponding Authors:  Li-Wen Cheng, Zai-Quan Xu     E-mail:  lwcheng@yzu.edu.cn;zaiquan.xu@uts.edu.au

Cite this article: 

Li-Wen Cheng(程立文), Jian Ma(马剑), Chang-Rui Cao(曹常锐), Zuo-Zheng Xu(徐作政), Tian Lan(兰天), Jin-Peng Yang(杨金彭), Hai-Tao Chen(陈海涛), Hong-Yan Yu(于洪岩), Shu-Dong Wu(吴曙东), Shun Yao(尧舜), Xiang-Hua Zeng(曾祥华), Zai-Quan Xu(徐仔全) Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers 2018 Chin. Phys. B 27 088504

[1] Krames M R, Shchekin O B, Mueller-Mach R, Mueller G O, Zhou L, Harbers G and Craford M G 2007 J. Disp. Technol. 3 160
[2] Dhanabalan S C, Ponraj J S, Guo Z, Li S, Bao Q and Zhang H 2017 Adv. Sci. 4 1600305
[3] Ponraj J S, Xu Z Q , Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H and Bao Q 2016 Nanotechnology 27 462001
[4] Dhanabalan S C, Ponraj J S, Zhang H and Bao Q 2016 Nanoscale 8 6410
[5] Piprek J 2010 Phys. Status Solidi A 207 2217
[6] Ivel, J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406
[7] Xu J, Schubert M F, Noemaun A N, Zhu D, Kim J K, Schubert E F, Park Y, et al. 2009 Appl. Phys. Lett. 94 011113
[8] Zhao H, Liu G, Zhang J, Arif R A and Tansu N 2013 J. Disp. Technol. 9 212
[9] Kuo Y K, Horng S H, Tsai, M C, Yen S H and Chang S H 2010 Opt. Commun. 283 3698
[10] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[11] Xie J, Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 121107
[12] Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 171113
[13] Wang C H, Chang S P, Chang W T, Li J C, Lu Y S, Li Z Y and Wang S C 2010 Appl. Phys. Lett. 97 181101
[14] Chang J Y, Tsai M C and Kuo Y K 2010 Opt. Lett. 35 1368
[15] Kim K S, Kim J H, Jung S J, Park Y J and Cho S N 2010 Appl. Phys. Lett. 96 091104
[16] Zhang Y Y and Yin A Y 2011 Appl. Phys. Lett. 99 221103
[17] Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
[18] Gorai A, Panda S and Biswas D 2017 Optik 140 665
[19] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[20] APSYS by Crosslight Software Inc Burnaby Canada (http://www.crosslight.com)
[21] Cheng L, Wu S, Xia C and Chen H 2015 J. Appl. Phys. 118 103103
[22] Cheng L and Wu S 2014 IEEE J. Quantum Electron. 50 261
[1] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[2] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[3] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[4] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[5] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[6] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[7] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[8] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[9] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[10] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[11] Effects of hole-injection through side-walls of large V-pits on efficiency droop in Ⅲ-nitride LEDs
Dong-Yan Zhang(张东炎), Jie Zhang(张洁), Xiao-Feng Liu(刘晓峰), Sha-Sha Chen(陈沙沙), Hui-Wen Li(李慧文), Ming-Qing Liu(刘明庆), Da-Qian Ye(叶大千), Du-Xiang Wang(王笃祥). Chin. Phys. B, 2019, 28(4): 048501.
[12] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[13] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[14] Current diffusion and efficiency droop in vertical light emitting diodes
R Q Wan(万荣桥), T Li(李滔), Z Q Liu(刘志强), X Y Yi(伊晓燕), J X Wang(王军喜), J H Li(李军辉), W H Zhu(朱文辉), J M Li(李晋闽), L C Wang(汪炼成). Chin. Phys. B, 2019, 28(1): 017203.
[15] GaN substrate and GaN homo-epitaxy for LEDs: Progress and challenges
Wu Jie-Jun (吴洁君), Wang Kun (王昆), Yu Tong-Jun (于彤军), Zhang Guo-Yi (张国义). Chin. Phys. B, 2015, 24(6): 068106.
No Suggested Reading articles found!