|
|
Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field |
Jiao-Li Gong(龚姣丽)1,2,3, Jin-Song Liu(刘劲松)1, Zheng Chu(褚政)1, Zhen-Gang Yang(杨振刚)1, Ke-Jia Wang(王可嘉)1, Jian-Quan Yao(姚建铨)1 |
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Science, Hubei University of Technology, Wuhan 430068, China;
3 Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China |
|
|
Abstract The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field.
|
Received: 08 April 2016
Revised: 23 June 2016
Accepted manuscript online:
|
PACS:
|
02.50.Ng
|
(Distribution theory and Monte Carlo studies)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021). |
Corresponding Authors:
Jin-Song Liu
E-mail: jsliu4508@vip.sina.com
|
Cite this article:
Jiao-Li Gong(龚姣丽), Jin-Song Liu(刘劲松), Zheng Chu(褚政), Zhen-Gang Yang(杨振刚), Ke-Jia Wang(王可嘉), Jian-Quan Yao(姚建铨) Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field 2016 Chin. Phys. B 25 100203
|
[1] |
Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R and Ploog K H 2006 Phys. Rev. Lett. 96 187402
|
[2] |
Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R, Lee J S and Schade U 2008 Phys. Rev. B 77 235204
|
[3] |
Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T and Hey R 2010 Phys. Rev. Lett. 104 146602
|
[4] |
Hebling J, Hoffmann M C, Hwang H Y, Yeh K L and Nelson K A 2010 Phys. Rev. B 81 035201
|
[5] |
Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M and Hegmann F A 2009 Phys. Rev. B 79 193204
|
[6] |
Feng W 2012 Chin. Phys. B 21 037306
|
[7] |
Chang C Y, Hsu H T, Chang E Y, Kuo C I, Datta S, Radosavl-jevic M, Miyamoto Y and Huang G W 2007 IEEE Electron Dev. Lett. 28 856
|
[8] |
Malmkvist M, Lefebvre E, Borg M, Desplanque L, Wallart X, Dam-brine G, Bollaert S and Grahn J 2008 IEEE Trans. Microwave Theory Tech. 56 2685
|
[9] |
Orr J M S, Buckle P D, Fearn M., Wilding P J, Bartlett C J, Emeny M T, Buckle L and Ashley T 2006 Semicond. Sci. Technol. 21 1408
|
[10] |
Chandra S T, Balamurugan N B, Priya G L and Manikandan S 2015 Chin. Phys. B 24 076105
|
[11] |
Gu P, Tani M, Kono S and Sakai K 2002 J. Appl. Phys. 91 5533
|
[12] |
Liu K, Xu J Z, Yuan T and Zhang X C 2006 Phys. Rev. B 73 155330
|
[13] |
Hasselbeck M P, Stalnaker D, Schlie L A, Rotter T J, Stintz A and Sheik-Bahae M 2002 Phys. Rev. B 65 233203
|
[14] |
Sun H Q, Zhao G Z, Zhang C L and Yang G Z 2008 Acta Phys. Sin. 57 790 (in Chinese)
|
[15] |
Wen H, Wiczer M and Lindenberg A M 2008 Phys. Rev. B 78 125203
|
[16] |
Hoffmann M C, Hebling J, Hwang H Y, Yeh K L and Nelson K A 2009 Phys. Rev. B 79 161201
|
[17] |
Ho I C and Zhang X C 2011 Appl. Phys. Lett. 98 241908
|
[18] |
Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
|
[19] |
Arabshahi H and Golafrooz S 2010 Bulg. J. Phys. 37 215
|
[20] |
Chu Z, Liu J and Wang K 2012 Opt. Lett. 37 1433
|
[21] |
Chu Z, Liu J and Liu J 2012 Appl. Phys. B 109 113
|
[22] |
Lugli P, Bordone P, Reggiani L, Rieger M, Kocevar P and Goodnick S M 1989 Phys. Rev. B 39 7852
|
[23] |
Collins C L and Yu P Y 1983 Phys. Rev. B 27 2602
|
[24] |
Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M and Hegmann F A 2009 Opt. Express 17 9620
|
[25] |
Herbert D C, Childs P A, Abram R A, Crow G C and Walmsley M 2005 IEEE Trans. Electron Dev. 52 1072
|
[26] |
Fischetti M V 1991 IEEE Trans. Electron Dev. 38 634
|
[27] |
Vasallo B G, Mateos J, Pardo D and González T 2004 J. Appl. Phys. 95 8271
|
[28] |
Rodilla H, González T, Pardo D and Mateos J 2009 J. Appl. Phys. 105 113705
|
[29] |
Hoffmann M C and Fülöp J A 2011 J. Phys. D: Appl. Phys. 44 083001
|
[30] |
Dai J, Liu J and zhang X C 2011 IEEE J. Sel. Top. Quant. 17 183
|
[31] |
Zhang X C and Xu J 2010 Introduction to THz Wave Photonics (Springer) pp. 28-29
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|