Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024207    DOI: 10.1088/1674-1056/27/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity

Di Wang(王迪)1,2, Meng Ding(丁孟)1, Hao-Yang Pi(皮浩洋)1, Xuan Li(李璇)1, Fei Yang(杨飞)1, Qing Ye(叶青)1, Hai-Wen Cai(蔡海文)1, Fang Wei(魏芳)1
1. Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A theoretical model of the fiber Bragg grating Fabry-Perot (FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their spectra are measured. The results confirm that weak intra-cavity loss is enhanced at the resonance transmission peak, that is, loss of transmission peaks is observably larger than other wavelengths. For FBG-FPs with multi resonance peaks, when the resonance peak wavelength is closer to the Bragg wavelength, the more significant loss effect of resonance transmission peak is exhibited. The measured spectra are fitted with the presented theoretical model. The fitted coefficient of determinations are near 1, which proves the validity of the theoretical model. This study can be applied to measure FBG loss more accurately, without a reference light. It can play an important role in FBG and FBG-FP writing process optimization and application parameter optimization.

Keywords:  fiber Bragg grating      Fabry-Perot cavity      intra-cavity loss      transmission characteristics  
Received:  22 August 2017      Revised:  17 October 2017      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Wg (Other fiber-optical devices)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61405212, 61377062, 61405218, and 61775225) and Scientific Innovation Fund of Chinese Academy of Sciences (Grant No. CXJJ-17S010).

Corresponding Authors:  Fei Yang, Hai-Wen Cai     E-mail:  fyang@siom.ac.cn;hwcai@siom.ac.cn
About author:  42.81.-i; 42.81.Wg; 42.81.Dp

Cite this article: 

Di Wang(王迪), Meng Ding(丁孟), Hao-Yang Pi(皮浩洋), Xuan Li(李璇), Fei Yang(杨飞), Qing Ye(叶青), Hai-Wen Cai(蔡海文), Fang Wei(魏芳) Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity 2018 Chin. Phys. B 27 024207

[1] Wei F, Yang F, Zhang X, Xu D, Ding M, Zhang L, Chen D J, Cai H W, Fang Z J and Gu X J 2016 Opt. Express 24 17406
[2] Cheng X P, Shum P, Tse C H; Zhou J L, Tang M, Tan W C, Wu R F and Zhang J 2008 IEEE Photon. Technol. Lett. 20 976
[3] Du Y, Dong X P, Chen M X and Zhou J L 2012 Microwave Opt. Technol. Lett. 54 1230
[4] Mo S P, Huang X, Xu S H, Feng Z M, Li C, Yang C S and Yang Z M 2015 Appl. Phys. Express 8 082703
[5] Geng D, Yang D X, Shen G F and Zhang X M 2008 Chin. Phys. B 17 1020
[6] Tao R C, Feng X H, Cao Y, Li Z H and Guan B O 2012 IEEE Photon. Technol. Lett. 24 1805
[7] Li Y, Zhou B, Zhang L and He S L 2015 Opt. Commun. 344 156
[8] Kim T Y, Hanawa M, Kim S J, Hann S, Kim Y H, Han W T and Park C S 2006 Opt. Express 14 4250
[9] Chow J, Town G, Eggleton B, Ibsen M, Sugden K and Bennion I 1996 IEEE Photon. Technol. Lett. 8 60
[10] Cranch G A, Flockhart G M H, and Kirkendall C K 2005 J. Lightwave Technol. 23 3798
[11] Miridonov S V, Shlyagin M G and Tentori D 2001 Opt. Commun. 191 253
[12] Liu P D, Huang W Z, Zhang W T and Li F 2017 IEEE Photon. Technol. Lett. 29 814
[13] Lauridsen V C, Povlsen J H and Varming P 1999 Electron. Lett. 35 300
[14] Kashyap R 2009 Fiber Bragg Gratings, 2nd edn. (Oxford:Academic Press) pp. 36-38
[15] Zabezhailov M O, Tomashuk A L, Nikolin I V and Golant K M 2001 Proceedings of the Radiation and Its Effects on Components and Systems, September 10-14, 2001, Grenoble, France, p. 192
[16] An H, Cui X, Wen P, Lin X, LIU H, Pun E Y B and Chung P S 1997 Chin. Phys. Lett. 14 187
[17] Bernard P, Bessard J, Brochu G and Lemaire É 2011 Proceedings of the Fiber Laser Applications, February 16-17, Istanbul, Turkey, p. FThE12
[18] Johlen D, Knappe F, Renner H and Brinkmeyer E 1999 Optical Fiber Communication Conference, February 21-26, 1999, San Diego, USA, p. ThD1
[19] Canning J and Sceats M G 1994 Electron. Lett. 30 1344
[20] Li S F, Li C R and Song C L 2013 Fundamentals of Optical Waveguide Theory (Beijing:Electronic Industry Press) p. 109
[21] Yariv A and Yeh P 2007 Photonics:Optical Electronics in Modern Communications, 6th edn. (New York:Oxford University Press) p. 239
[22] Littler I C M, Grujic T and Eggleton B J 2006 Appl. Opt. 45 4679
[23] Ding M, Chen D J, Fang Z J, Wang D, Zhang X, Wei F, Yang F, Ying K and Cai H W 2016 Opt. Express 24 25370
[1] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
[2] Low insertion loss silicon-based spatial light modulator with high reflective materials outside Fabry-Perot cavity
Li-Fei Tian(田立飞), Ying-Xin Kuang(匡迎新), Zhong-Chao Fan(樊中朝), Zhi-Yong Li(李智勇). Chin. Phys. B, 2019, 28(10): 104209.
[3] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[4] Multilayer graphene refractive index tuning by optical power
Lijun Li(李丽君), Yilin Liu(刘仪琳), Yinming Liu(刘荫明), Lin Xu(徐琳), Fei Yu(于飞), Tianzong Xu(徐天纵), Zhihui Shi(石志辉), Weikang Jia(贾伟康). Chin. Phys. B, 2018, 27(12): 126304.
[5] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
[6] 2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber
Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞). Chin. Phys. B, 2017, 26(11): 114205.
[7] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[8] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[9] Spectral analysis of the UFBG-based acousto–optical modulatorin V-I transmission matrix formalism
Wu Liang-Ying (吴良英), Pei Li (裴丽), Liu Chao (刘超), Wang Yi-Qun (王一群), Weng Si-Jun (翁思俊), Wang Jian-Shuai (王建帅). Chin. Phys. B, 2014, 23(11): 110702.
[10] Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion
Wang Tao (王涛), Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Tian Ye (田野), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(10): 104212.
[11] Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings
Jin Jing (金靖), Lin Song (林松), Song Ning-Fang (宋凝芳). Chin. Phys. B, 2014, 23(1): 014206.
[12] Experimental investigation of pre-irradiation effect on radiation sensitivity of temperature sensing fiber Bragg gratings
Jin Jing(金靖), Lin Song(林松), and Song Ning-Fang(宋凝芳) . Chin. Phys. B, 2012, 21(6): 064221.
No Suggested Reading articles found!