Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 3049-3053    DOI: 10.1088/1674-1056/18/7/073
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cavity design and linear analysis of 225 GHz frequency-quadrupling gyroklystron

Liu Di-Wei(刘頔威), Yuan Xue-Song(袁学松), Yan Yang(鄢扬), and Liu Sheng-Gang(刘盛纲)
THz Research Center, Research Institute of High Energy Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  This paper considers the frequency-quadrupling three-cavity gyroklystrons with successive frequency-doubling in each cavity. The cavities of 225 GHz frequency-quadrupling gyroklystron are designed with the scattering matrices method and the possible operating mode are discussed. With the point-gap theory, the starting currents of the possible operating modes and the potential parasitic modes in the output cavity are calculated. The optimal operating mode is proposed under consideration of the mode competition and the power capacity of the cavity.
Keywords:  frequency-quadrupling gyroklystron      THz      scattering matrices      point-gap theory  
Received:  18 November 2008      Revised:  23 December 2008      Accepted manuscript online: 
PACS:  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by National Natural Science Foundation of China (Grant No 10676110) and National High Technology Research and Development Program of China (Grant No 2007BC310401).

Cite this article: 

Liu Di-Wei(刘頔威), Yuan Xue-Song(袁学松), Yan Yang(鄢扬), and Liu Sheng-Gang(刘盛纲) Cavity design and linear analysis of 225 GHz frequency-quadrupling gyroklystron 2009 Chin. Phys. B 18 3049

[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[5] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[6] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[7] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[8] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[9] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[10] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[11] A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新), Chao Chang(常超)†, and Guozhi Liu(刘国治)‡. Chin. Phys. B, 2020, 29(10): 108701.
[12] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[13] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[14] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[15] Enhancement and modulation of terahertz radiation by multi-color laser pulses
Min-Jie Pei(裴敏洁), Chen-Hui Lu(卢晨晖), Xian-Wei Wang(王宪位), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(8): 084209.
No Suggested Reading articles found!