PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures |
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健) |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China |
|
|
Abstract The local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. The electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. A detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.
|
Received: 18 May 2012
Revised: 13 July 2012
Accepted manuscript online:
|
PACS:
|
52.65.-y
|
(Plasma simulation)
|
|
52.25.Jm
|
(Ionization of plasmas)
|
|
52.80.Hc
|
(Glow; corona)
|
|
52.25.Fi
|
(Transport properties)
|
|
Fund: Project supported by the Funds for Innovative Research Groups of China (Grant No. 51021005), the National Basic Research Program of China (Grant No. 2009CB724504), and the National Natural Science Foundation of China (Grant No. 50707036). |
Corresponding Authors:
Sima Wen-Xia
E-mail: cqsmwx@cqu.edu.cn
|
Cite this article:
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健) Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures 2013 Chin. Phys. B 22 015203
|
[1] |
Wang X, Yang Q, Yao C, Zhang X and Sun C 2011 Energies 4 2133
|
[2] |
Quoc An H, Pham Huu T, Le Van T, Cormier J M and Khacef A 2010 Catalysis Today
|
[3] |
Ono R and Oda T 2007 J. Phys. D: Appl. Phys. 40 176
|
[4] |
Rossi F, Kylián O, Rauscher H, Hasiwa M and Gilliland D 2009 New J. Phys. 11 115017
|
[5] |
Kutasi K, Guerra V and Sá P A 2011 Plasma Sources Sci. Technol. 20 35006
|
[6] |
Takashima K, Adamovich I V, Xiong Z, Kushner M J, Starikovskaia S, Czarnetzki U and Luggenhölscher D 2011 Phys. Plasmas 18 83505
|
[7] |
Kong M G, Shang W L and Wang D Z 2007 Chin. Phys. 16 485
|
[8] |
Lü B, Wang X X, Luo H Y and Liang Z 2009 Chin. Phys. B 18 646
|
[9] |
Zhao H Y and Mu Z X 2008 Chin. Phys. B 17 1475
|
[10] |
Ebert U and Sentman D D 2008 J. Phys. D: Appl. Phys. 41 230301
|
[11] |
Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P and Marode E 2007 Plasma Sources Sci. Technol. 16 656
|
[12] |
Ebert U, Brau F, Derks G, Hundsdorfer W, Kao C Y, Li C, Luque A, Meulenbroek B, Nijdam S and Ratushnaya V 2011 Nonlinearity 24 C1
|
[13] |
Ebert U, Montijn C, Briels T, Hundsdorfer W, Meulenbroek B, Rocco A and Van Veldhuizen E M 2006 Plasma Sources Sci. Technol. 15 S118
|
[14] |
Dujko S and Ebert U 2010 7th ICRP and 63rd GEC, October 4-8, 2010 Paris, France
|
[15] |
Chanrion O and Neubert T 2008 J. Comput. Phys. 227 7222
|
[16] |
Li C, Ebert U and Brok W 2008 IEEE Trans. Plasma Sci. 36 910
|
[17] |
Moss G D, Pasko V P, Liu N Veronis G 2006 J. Geophys. Res. 111 A2307
|
[18] |
Pancheshnyi S, Nudnova M and Starikovskii A 2005 Phys. Rev. E 71 16407
|
[19] |
Georghiou G E, Papadakis A P, Morrow R and Metaxas A C 2005 J. Phys. D: Appl. Phys. 38 R303
|
[20] |
Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
|
[21] |
Guo J M and Wu C H J 1993 IEEE Trans. Plasma Sci. 21 684
|
[22] |
Li C, Brok W J M, Ebert U and Van der Mullen J 2007 J. Appl. Phys. 101 123305
|
[23] |
Li C, Ebert U and Hundsdorfer W 2009 J. Phys. D: Appl. Phys. 42 202003
|
[24] |
Li C, Ebert U and Hundsdorfer W 2010 J. Comput. Phys. 229 200
|
[25] |
Li C, Ebert U and Hundsdorfer W 2012 J. Comput. Phys. 231 1020
|
[26] |
Li C, Ebert U, Brok W J M and Hundsdorfer W 2008 J. Phys. D: Appl. Phys. 41 32004
|
[27] |
Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
|
[28] |
Farouk T, Farouk B, Staack D, Gutsol A and Fridman A 2006 Plasma Sources Sci. Technol. 15 676
|
[29] |
Sima W X, Peng Q J, Yang Q, Yuan T and Shi J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 660
|
[30] |
Eichwald O, Ducasse O, Merbahi N, Yousfi M and Dubois D 2006 J. Phys. D: Appl. Phys. 39 99
|
[31] |
Lifshitz E M and Pitaevskii L P 2008 Physical Kinetics (2nd edn) (Beijing: Peking Higher Education Press) pp. 98, 161-166 (in Chinese)
|
[32] |
Dujko S, Ebert U, White R D and Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 1J
|
[33] |
Pancheshnyi S V, Starikovskaia S M and Starikovskii A Y 2001 J. Phys. D: Appl. Phys. 34 105
|
[34] |
Ségur P, Bourdon A and Marode E 2006 Plasma Sources Sci. Technol. 15 648
|
[35] |
Guo S H 2008 Electrodynamics (3rd edn) (Beijing: Peking Higher Education Press) pp. 1-10 (in Chinese)
|
[36] |
Hagelaar G J M, De Hoog F J and Kroesen G M W 2000 Phys. Rev. E 62 1452
|
[37] |
Boeuf J P and Pitchford L C 1995 Phys Rev. E 51 1376
|
[38] |
Johnson A A and Tezduyar T E 1999 Comput. Mech. 23 130
|
[39] |
Sentman D D, Stenbaek-Nielsen H C, McHarg M G and Morrill J S 2008 J. Geophys. Res. 113 D11112
|
[40] |
Gordillo-Vázquez F J 2008 J. Phys. D: Appl. Phys. 41 234016
|
[41] |
Yuan X and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
|
[42] |
Tanaka Y, Michishita T and Uesugi Y 2005 Plasma Sources Sci. Technol. 14 134
|
[43] |
Kossyi I A, Kostinsky A Y, Matveyev A A and Silakov V P 1992 Plasma Sources Sci. Technol. 1 207
|
[44] |
Yi W J and Williams P F 2002 J. Phys. D: Appl. Phys. 35 205
|
[45] |
Luque A, Ratushnaya V and Ebert U 2008 J. Phys. D: Appl. Phys. 41 234005
|
[46] |
Briels T M P, Kos J, Winands G J J, Van Veldhuizen E M and Ebert U 2008 J. Phys. D: Appl. Phys. 41 234004
|
[47] |
Sigmond R S 1984 J. Appl. Phys. 56 1355
|
[48] |
Winands G J J, Liu Z, Pemen A J M, Van Heesch E J M and Yan K 2008 J. Phys. D: Appl. Phys. 41 234001
|
[49] |
Raizer Y P and Braun C 1992 Gas Discharge Physics (Heidelberg: Springer) p. 31
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|