Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 015203    DOI: 10.1088/1674-1056/22/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures

Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健)
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
Abstract  The local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. The electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. A detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.
Keywords:  local electron mean energy profile      primary streamer discharge      electric field distribution      gas discharge  
Received:  18 May 2012      Revised:  13 July 2012      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.25.Jm (Ionization of plasmas)  
  52.80.Hc (Glow; corona)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the Funds for Innovative Research Groups of China (Grant No. 51021005), the National Basic Research Program of China (Grant No. 2009CB724504), and the National Natural Science Foundation of China (Grant No. 50707036).
Corresponding Authors:  Sima Wen-Xia     E-mail:  cqsmwx@cqu.edu.cn

Cite this article: 

Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健) Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures 2013 Chin. Phys. B 22 015203

[1] Wang X, Yang Q, Yao C, Zhang X and Sun C 2011 Energies 4 2133
[2] Quoc An H, Pham Huu T, Le Van T, Cormier J M and Khacef A 2010 Catalysis Today
[3] Ono R and Oda T 2007 J. Phys. D: Appl. Phys. 40 176
[4] Rossi F, Kylián O, Rauscher H, Hasiwa M and Gilliland D 2009 New J. Phys. 11 115017
[5] Kutasi K, Guerra V and Sá P A 2011 Plasma Sources Sci. Technol. 20 35006
[6] Takashima K, Adamovich I V, Xiong Z, Kushner M J, Starikovskaia S, Czarnetzki U and Luggenhölscher D 2011 Phys. Plasmas 18 83505
[7] Kong M G, Shang W L and Wang D Z 2007 Chin. Phys. 16 485
[8] Lü B, Wang X X, Luo H Y and Liang Z 2009 Chin. Phys. B 18 646
[9] Zhao H Y and Mu Z X 2008 Chin. Phys. B 17 1475
[10] Ebert U and Sentman D D 2008 J. Phys. D: Appl. Phys. 41 230301
[11] Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P and Marode E 2007 Plasma Sources Sci. Technol. 16 656
[12] Ebert U, Brau F, Derks G, Hundsdorfer W, Kao C Y, Li C, Luque A, Meulenbroek B, Nijdam S and Ratushnaya V 2011 Nonlinearity 24 C1
[13] Ebert U, Montijn C, Briels T, Hundsdorfer W, Meulenbroek B, Rocco A and Van Veldhuizen E M 2006 Plasma Sources Sci. Technol. 15 S118
[14] Dujko S and Ebert U 2010 7th ICRP and 63rd GEC, October 4-8, 2010 Paris, France
[15] Chanrion O and Neubert T 2008 J. Comput. Phys. 227 7222
[16] Li C, Ebert U and Brok W 2008 IEEE Trans. Plasma Sci. 36 910
[17] Moss G D, Pasko V P, Liu N Veronis G 2006 J. Geophys. Res. 111 A2307
[18] Pancheshnyi S, Nudnova M and Starikovskii A 2005 Phys. Rev. E 71 16407
[19] Georghiou G E, Papadakis A P, Morrow R and Metaxas A C 2005 J. Phys. D: Appl. Phys. 38 R303
[20] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[21] Guo J M and Wu C H J 1993 IEEE Trans. Plasma Sci. 21 684
[22] Li C, Brok W J M, Ebert U and Van der Mullen J 2007 J. Appl. Phys. 101 123305
[23] Li C, Ebert U and Hundsdorfer W 2009 J. Phys. D: Appl. Phys. 42 202003
[24] Li C, Ebert U and Hundsdorfer W 2010 J. Comput. Phys. 229 200
[25] Li C, Ebert U and Hundsdorfer W 2012 J. Comput. Phys. 231 1020
[26] Li C, Ebert U, Brok W J M and Hundsdorfer W 2008 J. Phys. D: Appl. Phys. 41 32004
[27] Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
[28] Farouk T, Farouk B, Staack D, Gutsol A and Fridman A 2006 Plasma Sources Sci. Technol. 15 676
[29] Sima W X, Peng Q J, Yang Q, Yuan T and Shi J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 660
[30] Eichwald O, Ducasse O, Merbahi N, Yousfi M and Dubois D 2006 J. Phys. D: Appl. Phys. 39 99
[31] Lifshitz E M and Pitaevskii L P 2008 Physical Kinetics (2nd edn) (Beijing: Peking Higher Education Press) pp. 98, 161-166 (in Chinese)
[32] Dujko S, Ebert U, White R D and Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 1J
[33] Pancheshnyi S V, Starikovskaia S M and Starikovskii A Y 2001 J. Phys. D: Appl. Phys. 34 105
[34] Ségur P, Bourdon A and Marode E 2006 Plasma Sources Sci. Technol. 15 648
[35] Guo S H 2008 Electrodynamics (3rd edn) (Beijing: Peking Higher Education Press) pp. 1-10 (in Chinese)
[36] Hagelaar G J M, De Hoog F J and Kroesen G M W 2000 Phys. Rev. E 62 1452
[37] Boeuf J P and Pitchford L C 1995 Phys Rev. E 51 1376
[38] Johnson A A and Tezduyar T E 1999 Comput. Mech. 23 130
[39] Sentman D D, Stenbaek-Nielsen H C, McHarg M G and Morrill J S 2008 J. Geophys. Res. 113 D11112
[40] Gordillo-Vázquez F J 2008 J. Phys. D: Appl. Phys. 41 234016
[41] Yuan X and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
[42] Tanaka Y, Michishita T and Uesugi Y 2005 Plasma Sources Sci. Technol. 14 134
[43] Kossyi I A, Kostinsky A Y, Matveyev A A and Silakov V P 1992 Plasma Sources Sci. Technol. 1 207
[44] Yi W J and Williams P F 2002 J. Phys. D: Appl. Phys. 35 205
[45] Luque A, Ratushnaya V and Ebert U 2008 J. Phys. D: Appl. Phys. 41 234005
[46] Briels T M P, Kos J, Winands G J J, Van Veldhuizen E M and Ebert U 2008 J. Phys. D: Appl. Phys. 41 234004
[47] Sigmond R S 1984 J. Appl. Phys. 56 1355
[48] Winands G J J, Liu Z, Pemen A J M, Van Heesch E J M and Yan K 2008 J. Phys. D: Appl. Phys. 41 234001
[49] Raizer Y P and Braun C 1992 Gas Discharge Physics (Heidelberg: Springer) p. 31
[1] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[2] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[3] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[4] Twin boundary dominated electric field distribution in CdZnTe detectors
Jiangpeng Dong(董江鹏), Wanqi Jie(介万奇), Jingyi Yu(余竞一), Rongrong Guo(郭榕榕), Christian Teichert, Kevin-P Gradwohl, Bin-Bin Zhang(张滨滨), Xiangxiang Luo(罗翔祥), Shouzhi Xi(席守智), Yadong Xu(徐亚东). Chin. Phys. B, 2018, 27(11): 117202.
[5] Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors
Yu Ying-Xia (于英霞), Lin Zhao-Jun (林兆军), Luan Chong-Biao (栾崇彪), Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Yang Ming (杨铭), Wang Yu-Tang (王玉堂). Chin. Phys. B, 2014, 23(4): 047201.
[6] Exploration of the Townsend regime by discharge light emission in a gas discharge device
Hilal Yucel Kurt. Chin. Phys. B, 2014, 23(1): 015201.
[7] Electric field distribution around the chain of composite nanoparticles in ferrofluids
Fan Chun-Zhen (范春珍), Wang Jun-Qiao (王俊俏), Cheng Yong-Guang (程永光), Ding Pei (丁佩), Liang Er-Jun (梁二军), Huang Ji-Ping (黄吉平). Chin. Phys. B, 2013, 22(8): 084703.
[8] Fabrication and characterization of V-gate AlGaN/GaN high electron mobility transistors
Zhang Kai (张凯), Cao Meng-Yi (曹梦逸), Chen Yong-He (陈永和), Yang Li-Yuan (杨丽媛), Wang Chong (王冲), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2013, 22(5): 057304.
[9] Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites
Ding Xia(丁霞), Jia Yan-Xia(贾艳霞), and Wei En-Bo(魏恩泊) . Chin. Phys. B, 2012, 21(5): 057202.
[10] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[11] A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas
Niu Tian-Ye(牛田野), Cao Jin-Xiang(曹金祥), Liu Lei(刘磊), Liu Jin-Ying(刘金英), Wang Yan(王艳), Wang Liang(王亮), and Lv You(吕铀). Chin. Phys. B, 2007, 16(9): 2757-2763.
No Suggested Reading articles found!