ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler |
Jian Shi(时坚), Rui-Qiong Ma(马瑞琼), Zuo-Liang Duan(段作梁), Meng Liang(梁猛), Bao-Yu Chai(柴宝玉), Jun Dong(董军) |
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract We propose an identical geometrical representation scheme for both Landau-Zener (LZ) tunneling process in two-waveguide coupler with a cubically bent structure and stimulated Raman adiabatic passage (STIRAP) in three-waveguide coupler, similar to the geometrical representation of sum frequency process. The results show that although the two-waveguide coupler with a cubically bent axis has not aperiodic structure, it acts as a chirped quasi-phase-matching (QPM) grating and corrects the relative phase between the two supermodes in the curved coupler system. We present a scheme about how to choose the parameters to design the curved beam splitter.
|
Received: 09 May 2017
Revised: 01 July 2017
Accepted manuscript online:
|
PACS:
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304247 and 61505161) and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40). |
Corresponding Authors:
Jian Shi
E-mail: shijian@xupt.edu.cn
|
Cite this article:
Jian Shi(时坚), Rui-Qiong Ma(马瑞琼), Zuo-Liang Duan(段作梁), Meng Liang(梁猛), Bao-Yu Chai(柴宝玉), Jun Dong(董军) Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler 2017 Chin. Phys. B 26 124214
|
[1] |
Khomeriki R and Ruffo S 2005 Phys. Rev. Lett. 94 113904
|
[2] |
Fratalocchi A and Assanto G 2006 Opt. Express 14 2021
|
[3] |
Zhou W, Zhang M X, Zhou L H, Zhou H, Ma Y L, Guo Y L, Chen L and Chen X M 2016 Chin. Phys. B 25 113401
|
[4] |
Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H and Chen Y P 2014 Phys. Rev. A 90 013616
|
[5] |
Gomez Llorente J M and Plata J 2016 Phys. Rev. A 94 053605
|
[6] |
Zhang H, Wang W Y, Meng H J, Ma Y, Ma Y Y and Duan W S 2013 Acta Phys. Sin. 62 110305(in Chinese)
|
[7] |
Salger T, Geckeler C, Kling S and Weitz M 2007 Phys. Rev. Lett. 99 190405
|
[8] |
Shi J X, Xu W W, Sun G Z, Chen J, Kang L and Wu P H 2017 Chin. Phys. B 26 047402
|
[9] |
Saito K, Wubs M, Kohler S, Hanggi P and Kayanuma Y 2006 Europhys. Lett. 76 22
|
[10] |
Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101
|
[11] |
Shi J, Ma R Q, Duan Z L, Liang M, Zhang W W and Dong J 2016 Opt. Commun. 370 29
|
[12] |
Longhi S, Valle G D, Ornigotti M and Laporta P 2007 Phys. Rev. B 76 201101
|
[13] |
Paspalakis E 2006 Opt. Commun. 258 30
|
[14] |
Vitanov N V and Shore B W 2006 Phys. Rev. A 73 053402
|
[15] |
Shore B W, Rangelov A A and Vitanov N V 2010 Opt. Commun. 283 730
|
[16] |
Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821
|
[17] |
Li J, Liu Y and Cong S L 2014 Chin. Phys. B 23 010308
|
[18] |
Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
|
[19] |
Drummond P D, Kheruntsyan K V, Heinzen D J and Wynar R H 2002 Phys. Rev. A 65 063619
|
[20] |
Dupont-Nivet M, Casiulis M, Laudat T, Westbrook C I and Schwartz S 2015 Phys. Rev. A 91 053420
|
[21] |
Kalugin N G and Rostovtsev Y V 2006 Opt. Lett. 31 969
|
[22] |
Wang H H, Wang L, Wei X G, Li Y J, Du D M, Kang Z H, Jiang Y and Gao J Y 2008 Appl. Phys. Lett. 92 041107
|
[23] |
Shore B W, Bergmann K and Oreg J 1992 Z. Phys. D 23 33
|
[24] |
Longhi S 2005 J. Opt. B 7 L9
|
[25] |
Dreisow F, Szameit A, Heinrich M, Nolte S, Tunnermann A, Ornigotti M and Longhi S 2009 Phys. Rev. A 79 055802
|
[26] |
Imeshev G, Arbore M A, Fejer M M, Galvanauskas A, Fermann M and Harter D 2000 J. Opt. Soc. Am. B 17 304
|
[27] |
Hum D S and Fejer M M 2007 C. R. Phys. 8 180
|
[28] |
Suchowski H, Prabhudesai V, Oron D, Arie A and Silberberg Y 2009 Opt. Express 17 12731
|
[29] |
Suchowski H, Oron D, Arie A and Silberberg Y 2008 Phys. Rev. A 78 063821
|
[30] |
Bloch F 1946 Phys. Rev. 70 460
|
[31] |
Feynman R P, Vernon E L and Hellwarth R W 1957 J. Appl. Phys. 28 49
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|