Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100306    DOI: 10.1088/1674-1056/27/10/100306
GENERAL Prev   Next  

Two-qubit pure state tomography by five product orthonormal bases

Yu Wang(王宇)1,2, Yun Shang(尚云)1,2,3,4
1 Institute of Mathematics, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China;
4 MDIS, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China

In this paper, we focus on two-qubit pure state tomography. For an arbitrary unknown two-qubit pure state, separable or entangled, it has been found that the measurement probabilities of 16 projections onto the tensor products of Pauli eigenstates are enough to uniquely determine the state. Moreover, these corresponding product states are arranged into five orthonormal bases. We design five quantum circuits, which are decomposed into the common gates in universal quantum computation, to simulate the five projective measurements onto these bases. At the end of each circuit, we measure each qubit with the projective measurement {|0><0|,|1><1|}. Then, we consider the open problem whether three orthonormal bases are enough to distinguish all two-qubit pure states. A necessary condition is given. Suppose that there are three orthonormal bases B1,B2,B3. Denote the unitary transition matrices from B1 to B2,B3 as U1 and U2. All 32 elements of matrices U1 and U2 should not be zero. If not, these three bases cannot distinguish all two-qubit pure states.

Keywords:  two-qubit pure state      tomography      projective measurement      quantum circuit  
Received:  11 February 2018      Revised:  17 June 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.65.Aa (Quantum systems with finite Hilbert space)  

Project supported partially by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant No. 61472412), and the Program for Creative Research Group of the National Natural Science Foundation of China (Grant No. 61621003).

Corresponding Authors:  Yun Shang     E-mail:

Cite this article: 

Yu Wang(王宇), Yun Shang(尚云) Two-qubit pure state tomography by five product orthonormal bases 2018 Chin. Phys. B 27 100306

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401
[4] Ma X, Jackson T, Zhou H, Chen J X, Lu D W, Mazurek M D, Fisher K A G, Peng X H, Kribs D, Resch K J, Ji Z F, Zeng B and Laflamme R 2016 Phys. Rev. A 93 032140
[5] Yan F, Yang M and Cao Z L 2010 Phys. Rev. A 82 044102
[6] Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406
[7] Lima G, Neves L, Guzmán R, Gómez E S, Nogueira W A T, Delgado A, Vargas A and Saavedra C 2011 Opt. Express 19 3542
[8] Giovannini D, Romero J, Leach J, Dudley A, Forbes A and Padgett M J 2013 Phys. Rev. Lett. 110 143601
[9] Daniel F V J, Paul G K, William J M and Andrew G W 2001 Phys. Rev. A 64 052312
[10] Carmeli C, Heinosaari T, Schultz J and Toigo A 2015 Euro. Phys. J. D 69 179
[11] Goyeneche D, Caňas G, Etcheverry S, Gómez E S, Xavier G B, Lima G and Delgado A 2015 Phys. Rev. Lett. 115 090401
[12] Carmeli C, Heinosaari T, Kech M, Schultz J and Toigo A 2016 Europhys. Lett. 115 30001
[13] Renes J M, Blume-Kohout R, Scott A J and Caves C M 2004 J. Math. Phys. 45 2171
[14] Řeháček J, Englert B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
[15] Kalev A, Shang J W and Englert B G 2012 Phys. Rev. A 85 052115
[16] Band W and Park J 1970 Found. Phys. 1 133
[17] Park J and Band W 1971 Found. Phys. 1 211
[18] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[19] Yin Q, Xiang G Y, Li Ch F and Guo G C 2017 Chin. Phys. Lett. 34 030301
[20] Blume-Kohout R 2010 New J. Phys. 12 043034
[21] Baldwin C H, Deutsch I H and Kalev A 2016 Phys. Rev. A 93 052105
[22] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University) pp. 172, 389, 398
[23] Pauli W 1933 Die allgemeinen Prinzipen der Wellenmechanik, Vol. 24 (Berlin:Springer-Verlag)
[24] Peres A 1993 Quantum Theory:Concepts and Methods (Dordrecht:Kluwer Academic, The Netherlands), POVMs are discussed in Sections 9-5 and 9-6, and PSI-complete measurements in Section 3-5.
[25] Flammia S T, Silberfarb A and Caves C M 2005 Found. Phys. 35 1985
[26] Moroz B Z 1983 Int. J. Theor. Phys. 22 329
[27] Moroz B Z 1994 Theor. Math. Phys. 101 1200
[28] Heinosaari T, Mazzarella L and Wolf M M 2013 Commun. Math. Phys. 318 355
[29] Jaming P 2014 Appl. Comput. Harmon. A 37 413
[1] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[4] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[5] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[6] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[7] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[8] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[9] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[10] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[11] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[12] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[13] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[14] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[15] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
No Suggested Reading articles found!