Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 070302    DOI: 10.1088/1674-1056/26/7/070302
GENERAL Prev   Next  

Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction

Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  We investigate the thermal entanglement of the spin-1 Ising–Heisenberg diamond chain, which can be regarded as a theoretical model for the homometallic molecular ferrimagnet[Ni3(C4H2O4)2-(μ3-OH)2(H2O)4]n·(2H2O)n. Two cases, i.e., the isotropic Heisenberg (Ising–XXX) coupling model and anisotropic Heisenberg (Ising–XXZ) coupling model, are discussed respectively. The negativity is chosen as the measurement of the thermal entanglement. By means of the transfer-matrix approach, we focus on the effects of biquadratic interaction parameters on the negativity of the infinite spin-1 Ising–Heisenberg diamond chain. In the Ising–XXX coupling model, it is shown that for the case with ferromagnetic coupling the thermal entanglement can be induced by the biquadratic interaction, but the external magnetic field will suppress the occurrence of the entanglement induced by the biquadratic interaction. In the Ising–XXZ coupling model, for the case with antiferromagnetic coupling, due to the biquadratic interaction the effect of the anisotropy parameter on the entanglement will be suppressed at near-zero temperature. Moreover, the biquadratic interaction makes the threshold temperature increase. The effects of the external magnetic field on the thermal entanglement are also discussed, and it is observed that the entanglement revival phenomena exist in both models considered.
Keywords:  thermal entanglement      Ising–Heisenberg diamond chain      negativity      transfer-matrix approach  
Received:  06 November 2016      Revised:  18 March 2017      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11274102),the New Century Excellent Talents in University of Ministry of Education of China (Grant No.NCET-11-0960),and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20134208110001).
Corresponding Authors:  Zhu Mao, Bin Zhou     E-mail:;

Cite this article: 

Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction 2017 Chin. Phys. B 26 070302

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Schumacher B 1995 Phys. Rev. A 51 2738
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Deutsch D, Ekert A, Jozsa R, Macchiavello C and Popescu S S 1996 Phys. Rev. Lett. 77 2818
[5] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[6] Oconnor K M and Wootters W K 2001 Phys. Rev. A 63 052302
[7] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[8] Nielsen M A 2000 arXiv:quant-ph/0011036v1
[9] Wang X G 2001 Phys. Rev. A 64 012313
[10] Zhang Y L and Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)
[11] Cao M and Zhu S Q 2005 Phys. Rev. A 71 034311
[12] Hou J M, Du L, Ding J Y and Zhang W X 2010 Chin. Phys. B 19 110313
[13] Ma X S, Qiao Y, Cheng M T and Liu X D 2014 Quantum Inf. Process. 13 1879
[14] Guo K T, Liang M C, Xu H Y and Zhu C B 2010 J. Phys. A 43 505301
[15] Takano K, Kubo K and Sakamoto H 1996 J. Phys.:Condens. Matter 8 6405
[16] Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
[17] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[18] Valverde S, Rojas O and S M de Souza 2008 J. Phys.:Condens. Matter. 20 345208
[19] Li Y C and Li S S 2008 Phys. Rev. B 78 184412
[20] Rule K C, Wolter A U B, Sullow S, Temmamt D A, Kohler S, Wolf B, Lang M and Schreuer J 2008 Phys. Rev. Lett. 100 117202
[21] Aimo F, Kramer S, Klanjsek M, Horvatic M, Berthier C and Kikuchi H 2009 Phys. Rev. Lett. 102 127205
[22] Fu H H, Yao K L and Liu Z L 2006 Phy. Let. A 358 443
[23] Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272 984
[24] Čanová L, Strečka J and Jaščur M 2006 J. Phys.:Condens. Matter 18 4967
[25] Strečka J, Čanová L, LučivjanskÝ T and Jaščur M 2009 J. Phys.:Conf. Series 145 012058
[26] Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.:Condens. Matter 24 25601
[27] Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
[28] Torrico J, Rojas M, de Souza S M and Ananikian N S 2014 Europhys. Lett. 108 50007
[29] Torrico J, Rojas M, de Souza S M and Rojas O 2016 arXiv:1602.07279[cond-mat.str-el]
[30] Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
[31] Gao K, Xu Y L, Kong X M and Liu Z Q 2015 Physica A 429 10
[32] Čanová L, Strečka J and LučivjanskÝ T 2009 Condens. Matter Phys. 12 353
[33] Rojas O, de Souza S M, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
[34] Lisnyi B and Strečka J 2015 J. Magn. Magn. Mater. 377 502
[35] Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V V 2015 Solid State Comm. 203 5
[36] Konar S, Mukherjee P S, Zangrado E, Lloret F and Chaudhuri N R 2002 Angew. Chem. Ind. Ed 41 1561
[37] Sheikh J A, Adhikary A, Jena H S, Biswas S and Konar S 2014 Inorg. Chem. 53 1606
[38] Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V V 2015 Solid State Comm. 224 15
[39] Ananikian N S, Strečka J and Hovhannisyan V 2014 Solid State Comm. 194 48
[40] Hovhannisyan V V, Strečka and Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401
[41] Hovhannisyan V V, Ananikian N S and Kenna R 2016 Physica A 453 116
[42] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[43] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press)
[44] Souza A M, Reis M S, Soares-Pinto D O, Oliveira I S and Sarthour R S 2008 Phys. Rev. B 77 104402
[45] Lima Sharma A L and Gomes A M 2009 Europhys. Lett. 84 60003
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[3] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[4] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[5] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[6] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[7] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[8] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[9] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[10] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[11] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[12] Entanglement detection in the mixed-spin Ising-XY model
Hamid Arian Zad. Chin. Phys. B, 2016, 25(3): 030303.
[13] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[14] Decoherence of genuine multipartite entanglement for local non-Markovian-Lorentzian reservoirs
Mazhar Ali. Chin. Phys. B, 2015, 24(12): 120303.
[15] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
No Suggested Reading articles found!