Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040701    DOI: 10.1088/1674-1056/26/4/040701
GENERAL Prev   Next  

Modeling and analysis for the image mapping spectrometer

Yan Yuan(袁艳), Xiao-Ming Ding(丁晓铭), Li-Juan Su(苏丽娟), Wan-Yue Wang(王婉悦)
Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, Beihang University, Beijing 100191, China
Abstract  The snapshot image mapping spectrometer (IMS) has advantages such as high temporal resolution, high throughput, compact structure and simple reconstructed algorithm. In recent years, it has been utilized in biomedicine, remote sensing, etc. However, the system errors and various factors can cause cross talk, image degradation and spectral distortion in the system. In this research, a theoretical model is presented along with the point response function (PRF) for the IMS, and the influence of the mirror tilt angle error of the image mapper and the prism apex angle error are analyzed based on the model. The results indicate that the tilt angle error causes loss of light throughput and the prism apex angle error causes spectral mixing between adjacent sub-images. The light intensity on the image plane is reduced to 95% when the mirror tilt angle error is increased to ±100" (≈0.028°). The prism apex error should be controlled within the range of 0-36" (0.01°) to ensure the designed number of spectral bands, and avoid spectral mixing between adjacent images.
Keywords:  imaging spectrometers      snapshot imaging spectrometer      imaging model      image mapper  
Received:  06 November 2016      Revised:  17 January 2017      Accepted manuscript online: 
PACS:  07.60.Rd (Visible and ultraviolet spectrometers)  
  07.05.Tp (Computer modeling and simulation)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61635002 and 61307020) and the Changjiang Scholars and Innovative Research Team in University (PCSIRT) Program, China.
Corresponding Authors:  Yan Yuan     E-mail:  yuanyan@buaa.edu.cn

Cite this article: 

Yan Yuan(袁艳), Xiao-Ming Ding(丁晓铭), Li-Juan Su(苏丽娟), Wan-Yue Wang(王婉悦) Modeling and analysis for the image mapping spectrometer 2017 Chin. Phys. B 26 040701

[1] Vane G, Goetz A F H and Wellman J B 1984 IEEE Trans. Geosci. Remote Sens. 22 546
[2] Xiang Li B, Yuan Y and Lu Q B 2009 Acta Phys. Sin. 58 5399 (in Chinese)
[3] Li S P, Wang L Y, Yan B, Li L and Liu Y J 2012 Chin. Phys. B 21 108703
[4] Zhang H M, Wang L Y, Yan B, Li L, Xi X Q and Lu L Z 2013 Chin. Phys. B 22 078701
[5] Qian L L, Lv Q B, Huang W and Xiang Li B 2015 Chin. Phys. B 24 080703
[6] Gao L, Wang L V 2016 Phys. Rep. 616 1
[7] Gao L, Kester R T and Tkaczyk T S 2009 Opt. Express 17 12293
[8] Weitzel L, Krabbe A, Kroker H, Thatte N, Tacconi-Garman L E, Cameron M and Genzel R 1996 Astron. Astrophys. Suppl. Ser. 119 531
[9] Murphy T W, Soifer B T 1999 Publ. Astron. Soc. Pac. 111 1176
[10] Cook T A, Gsell V J, Golub J and Chakrabarti S 2003 Astrophys. J. 585 1177
[11] Henault F, Bacon R, Content R, Lantz B, Laurent F, Lemonnier J and Morris S 2004 Proc. SPIE 5249 134
[12] Tecza M, Thatte N, Clarke F, Goodsall T, Freeman D and Salaun Y 2006 Proc. SPIE 6273 62732L
[13] Antichi J, Dohlen K, Gratton R G, Mesa D, Claudi R U, Giro E, Boccaletti A, Mouillet D, Puget P and Beuzit J L 2009 Astrophys. J. 695 1042
[14] Zhang J J, Cheng X M, Song J Y and Bai J M 2011 Astronomical Research & Technology 8 139 (in Chinese)
[15] Gao D Y, Zhao F, Qiu P and Jiang X J 2012 Astronomical Research & Technology 9 143 (in Chinese)
[16] Zhang T Y, Ji H X, Hou Y H, Hu Z W and Wang L 2015 J. Appl. Opt. 36 531
[17] Kester R T, Gao L, Hagen N and Tkaczyk T S 2010 Opt. Express 18 14330
[18] Kester R T, Bedard N, Gao L and Tkaczyk T S 2011 J. Biomed. Opt. 16 056005
[19] Kester R T, Bedard N and Tkaczyk T S 2011 Proc. SPIE 8048 289
[20] Gao L, Kester R T and Tkaczyk T S 2010 Biomedical Optics and 3-D Imaging, April 11-14, 2010, Miami, USA, p. BMD8
[21] Gao L, Elliott A D, Kester R T, Bedard N, Hagen N, Piston D W and Tkaczyk T S 2010 Frontiers in Optics, October 24-28, 2010, Rochester, USA, p. FML2
[22] Bedard N, Schwarz R A, Hu A, Bhattar V, Howe J, Williams M D, Gillenwater A M, Kortum R R and Tkaczyk T S 2013 Biomed. Opt. Express 4 938
[23] Kester R T, Gao L, Bedard N and Tkaczyk T S 2010 Proc. SPIE 7555 75550A
[24] Gao L, Smith R T and Tkaczyk T S 2012 Biomed. Opt. Express 3 48
[25] Hagen N, Kester R T and Walker C 2012 Proc. SPIE 8358 43
[26] Gao L, Bedard N, Hagen N, Kester R T and Tkaczyk T S 2011 Opt. Express 19 17439
[27] Nguyen T, Pierce M C, Higgins L and Tkaczyk T S 2013 Opt. Express 21 13758
[28] Gao L and Smith R T. 2015 J. Biophotonics 8 441
[29] Bedard N, Hagen N, Gao L and Tkaczyk T S 2012 Opt. Eng. 51 111711
[30] Gao L and Tkaczyk T S 2012 Opt. Eng. 51 043203
[31] Kester R T, Gao L and Tkaczyk T S 2010 Appl. Opt. 49 1886
[32] Goodman J W 2005 Introduction to Fourier Optics, 3rd edn. (New York: Roberts and Company Publishers) p. 23
[33] Eismann M T 2012 Hyperspectral Remote Sensing (Washington: SPIE) p. 314
[34] Voelz D 2011 Computational Fourier Optics: a MATLAB tutorial (Washington: SPIE) p. 29
[35] Bass M 2010 Handbook of Optics, Vol. 4, 3rd edn. (New York: McGraw-Hill) p. 2.21
[36] Shao H, Wang J Y and Xue Y Q 1998 J. Remote Sens. 2 251
[37] Bai X, Zhang C M, Jing C Y, Guan X W, Cao F, Li Y N and Xie L L 2011 Acta Phys. Sin. 60 070703 (in Chinese)
[38] Zhang C M, Huang W J and Zhao B C 2010 Acta Phys. Sin. 59 5486 (in Chinese)
[39] Ding X M, Yuan Y and Su L J 2016 Frontiers in Optics, October 17-21, 2016, Rochester, SUA, p. JTh2A.73
[40] Shamir J 2006 Optical Systems and Processes (Washington: SPIE) p. 106
[1] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[2] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[3] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[4] Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser
Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳). Chin. Phys. B, 2020, 29(6): 060701.
[5] Calibration and data restoration of light field modulated imaging spectrometer
Li-Juan Su(苏丽娟), Qiang-Qiang Yan(严强强), Yan Yuan(袁艳), Shi-Feng Wang(王世丰), Yu-Jian Liu(刘宇健). Chin. Phys. B, 2018, 27(8): 080702.
[6] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[7] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
[8] Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy
Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清). Chin. Phys. B, 2016, 25(2): 024210.
[9] Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer
Zhang Chun-Min(张淳民), Ai Jing-Jing(艾晶晶), and Ren Wen-Yi(任文艺). Chin. Phys. B, 2011, 20(2): 020701.
[10] A diode laser spectrometer at 634nm and absolute frequency measurements using optical frequency comb
Yi Lin(伊林), Yuan Jie(袁杰), Qi Xiang-Hui(齐向晖), Chen Wen-Lan(陈文兰), Zhou Da-Wei(周大伟), Zhou Tong(周通), Zhou Xiao-Ji(周小计), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2009, 18(4): 1409-1412.
No Suggested Reading articles found!