|
|
Band gap anomaly and topological properties in lead chalcogenides |
Simin Nie(聂思敏)1, Xiao Yan Xu(许霄琰)1, Gang Xu(徐刚)1, Zhong Fang(方忠)1,2 |
1. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract Band gap anomaly is a well-known issue in lead chalcogenides PbX (X=S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the band gap anomaly in PbTe is mainly related to the high on-site energy of Te 5s orbital and the large s-p hopping originated from the irregular extended distribution of Te 5s electrons. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with band inversion at L point, which clearly indicates that PbPo is a topological crystalline insulator (TCI). The calculated mirror Chern number and surface states double confirm this conclusion.
|
Received: 16 December 2015
Revised: 11 January 2016
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204359), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100). |
Corresponding Authors:
Gang Xu
E-mail: gangx@iphy.ac.cn
|
Cite this article:
Simin Nie(聂思敏), Xiao Yan Xu(许霄琰), Gang Xu(徐刚), Zhong Fang(方忠) Band gap anomaly and topological properties in lead chalcogenides 2016 Chin. Phys. B 25 037311
|
[1] |
Matsushita Y, Wianecki P A, Sommer A T, Geballe T H and Fisher I R 2006 Phys. Rev. B 74 134512
|
[2] |
Wood C 1988 Rep. Prog. Phys. 51 459
|
[3] |
Wang H, Pei Y, LaLonde A D and Snyder G J 2011 Adv. Mater. 23 1366
|
[4] |
Lebedev A I and Sluchinskaya I A 1994 Ferroelectrics 157 275
|
[5] |
Akimov B A, Dmitriev A V, Khokhlov D R and Ryabova L I 1993 Phys. Status Solidi (a) 137 9
|
[6] |
Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse H W and Law M 2010 Nano Lett. 10 1960
|
[7] |
Jin S, Wu H and Xu T 2009 Appl. Phys. Lett. 95 132105
|
[8] |
Grabecki G 2007 J. Appl. Phys. 101 081722
|
[9] |
Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982
|
[10] |
Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nat. Phys. 8 800
|
[11] |
Fu L 2011 Phys. Rev. Lett. 106 106802
|
[12] |
Weng H, Zhao J, Wang Z, Fang Z and Dai X 2014 Phys. Rev. Lett. 112 016403
|
[13] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[14] |
Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
|
[15] |
Weng H, Dai X and Fang Z 2014 MRS Bulletin 39 849
|
[16] |
Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
|
[17] |
Weng H, Ranjbar A, Liang Y, Song Z, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
|
[18] |
Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[19] |
Xu G, Wang J, Felser C, Qi X and Zhang S 2015 Nano Lett. 15 2019
|
[20] |
Nie S M, Song Z, Weng H and Fang Z 2015 Phys. Rev. B 91 235434
|
[21] |
Moss T S 1959 Butterworths Scientific Publications and Academic Press (London and New York)
|
[22] |
Long D 1962 J. Appl. Phys. 33 1682
|
[23] |
Dalven R 1971 Phys. Rev. B 3 3359
|
[24] |
Blöchl P 1994 Phys. Rev. B 50 17953
|
[25] |
Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
|
[26] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[28] |
Mehmood S K, Zaman S, Ahmed K and Asim M M 2010 Key Eng. Mater. 442 123
|
[29] |
Aliev I I, Babanly K N and Babanly N B 2008 Inorganic Mater. 44 1179
|
[30] |
Minikayev R, Dynowska E, Kaminska E, Szczerbakow A, Trots D, Story T and Szuszkiewicz W 2011 Acta Phys. Pol. A 119 699
|
[31] |
Witteman W G, Giorgi A L and Vier D T 1960 J. Phys. Chem. 64 434
|
[32] |
Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[33] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[34] |
Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
|
[35] |
Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2$k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (TU Vienna, Vienna)
|
[36] |
Slater J C and Koster G F 1954 Phys. Rev. 94 1498
|
[37] |
Lach-Hab M, Keegan M, Papaconstantopoulos D A and Mehl M J 2000 J. Phys. Chem. Solids 61 1639
|
[38] |
Wittel K and Manne R 1974 Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 33 347
|
[39] |
Hummer K, Grüneis A and Kresse G 2007 Phys. Rev. B 75 195211
|
[40] |
Dalven R 1973 Phys. Rev.B 8 6033
|
[41] |
Barone P, Rauch T, Di Sante D, Henk J, Mertig I and Picozzi S 2013 Phys. Rev. B 88 045207
|
[42] |
Clementi E, Raimondi D L and Reinhardt W P 1967 J. Chem. Phys. 47 1300
|
[43] |
Sevier K D 1979 Atom. Data Nuclear Data Tables 24 323
|
[44] |
Sun Y, Zhong Z, Shirakawa T, Franchini C, Li D, Li Y, Yunoki S and Chen X 2013 Phys. Rev. B 88 235122
|
[45] |
Tsu R, Howard W E and Esaki L 1968 Phys. Rev. 172 779
|
[46] |
Dalven R 1972 Phys. Rev. Lett. 28 91
|
[47] |
Rabii S and Lasseter R 1974 Phys. Rev. Lett. 33 703
|
[48] |
Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X and Fang Z 2011 Phys. Rev. Lett. 106 156808
|
[49] |
Zhang H, Liu C, Qi X, Dai X, Fang Z and Zhang S 2009 Nat. Phys. 5 438
|
[50] |
Liu J, Duan W and Fu L 2013 Phys. Rev. B 88 241303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|