Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110505    DOI: 10.1088/1674-1056/26/11/110505
GENERAL Prev   Next  

Empirical topological investigation of practical supply chains based on complex networks

Hao Liao(廖好)1, Jing Shen(沈婧)1, Xing-Tong Wu(吴兴桐)1, Bo-Kui Chen(陈博奎)2, Mingyang Zhou(周明洋)1
1. National Engineering Laboratory for Big Data Computing Systems, Guangdong Province Key Laboratory of Popular High Performance Computers, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
2. Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore
Abstract  

The industrial supply chain networks basically capture the circulation of social resource, dominating the stability and efficiency of the industrial system. In this paper, we provide an empirical study of the topology of smartphone supply chain network. The supply chain network is constructed using open online data. Our experimental results show that the smartphone supply chain network has small-world feature with scale-free degree distribution, in which a few high degree nodes play a key role in the function and can effectively reduce the communication cost. We also detect the community structure to find the basic functional unit. It shows that information communication between nodes is crucial to improve the resource utilization. We should pay attention to the global resource configuration for such electronic production management.

Keywords:  China supply chain networks      complex networks      data science      network science  
Received:  14 June 2017      Revised:  19 July 2017      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.Gg (Stochastic analysis methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11547040 and 61703281), Guangdong Province Natural Science Foundation, China (Grant Nos. 2016A030310051 and 2015KONCX143), Shenzhen Fundamental Research Foundation, China (Grant Nos. JCYJ20150625101524056 and JCYJ20160520162743717), SZU Student Innovation Fund, China, the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030310374), the Young Teachers Start-up Fund of Natural Science Foundation of Shenzhen University, China, the Natural Science Foundation of SZU, China (Grant No. 2016-24), and the Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE 2013-T2-2-033).

Corresponding Authors:  Mingyang Zhou     E-mail:  zmy@szu.edu.cn

Cite this article: 

Hao Liao(廖好), Jing Shen(沈婧), Xing-Tong Wu(吴兴桐), Bo-Kui Chen(陈博奎), Mingyang Zhou(周明洋) Empirical topological investigation of practical supply chains based on complex networks 2017 Chin. Phys. B 26 110505

[1] Te Velde D W, Ahmed M M, Alemu G, Bategeka L, Calí M, Castel-Branco C, Chansa F, Dasgupta S, Foresti M, Hangi M and Ingombe L 2010 London:Overseas Development Institute p. 5
[2] Song D W and Lee P T 2009 Maritime Logistics in the Global Supply Chain 83 84
[3] Panayides PM 2006 Maritime Economics& Logistics 8 3
[4] Burgess R 1998 The International Journal of Logistics Management 9 15
[5] Ng A K, Lee P T, Fu X and Sutiwartnarueput K 2014 with selected papers from IAME 2012, IFSPA 2013 and the 2013 Conference on Challenge and Response of Ports in a Globalized Economy 209 211
[6] Lam J S and Bai X 2016 Transportation Research Part E:Logistics and Transportation Review 16 27
[7] Wang T and Cullinane K 2015 InPort Management(London:Palgrave Macmillan) pp. 253-272
[8] Hu S, Li X, Fang Q and Yang Z 2008 International Journal of Information Technology& Decision Making 7 627
[9] Wu L, Chuang CH and Hsu CH 2014 International Journal of Production Economics 112 132
[10] Shore B and Venkatachalam AR 2003 International Journal of Physical Distribution& Logistics Management 33 804
[11] Hu S, Li X, Fang Q and Yang Z 2008 International Journal of Information Technology& Decision Making 7 627
[12] Stadtler H 2015 InSupply Chain Management and Advanced Planning(Berlin Heidelberg:Springer) pp. 3-28
[13] Lazzarini S, Chaddad F and Cook M 2001 Journal on Chain and Net-work Science 1 7
[14] Surana A, Kumara S, Greaves M and Raghavan U N 2005 International Journal of Production Research 43 4235
[15] Hearnshaw E J and Wilson M M 2013 International Journal of Operations& Production Management 33 442
[16] Barabá A L and Albert R 1999 Science 286 509
[17] Ngai E W, Moon K K, Riggins F J and Candace Y Y 2008 International Journal of Production Economics 112 510
[18] Pike R, Dorward S, Griesemer R and Quinlan S 2005 Scientific Programming 13 277
[19] Qiu T, Chen G and Zhang Z K 2017 Chin. Phys. Lett 34 068902
[20] http://120.25.219.225:8765/
[21] Newman M E 2003 SIAM Review 45 167
[22] Lewis T G 2011 Network Science(Hoboken:John Wiley& Sons)
[23] Watts D J and Strogatz S H 1998 Nature 398 440
[24] Mariani M S, Medo M and Zhang Y C 2015 Scientific Reports 5
[25] Zhou M, He X, Fu Z and Zhuo Z 2016 Physica A 442 458
[26] Fortunato S 2010 Physics Reports 486 75
[27] Zhang L, Cao J and Li J 2015 Mathematical Problems in Engineering
[28] Lu J A, Xu M M and Zhou J 2016 Acta Phys. Sin. 65 028902(in Chinese)
[29] Cheng J J, Xiong F and Wang X M 2016 Chin. Phys. B 25 108904
[30] Panayides P M 2006 Maritime Economics& Logistics 8 3
[31] Ahn Y Y, Bagrow J P and Lehmann S 2009 Nature 466 761
[32] Zhang D M,Jiang X Q,Fang P J and He H M 2015 Chin. Phys. Lett. 32 088901
[33] Palla G, Derényi I, Farkas I and Vicsek T 2005 Nature 435 814
[34] Pothen A, Simon H D and Liou K P 1990 SIAM Journal on Matrix Analysis and Applications 11 430
[35] Capocci A, Servedio V D, Caldarelli G and Colaiori F 2005 Physica A 352 669
[36] Wang C, Sun J C and Han F 2016 Chin. Phys. B 25 12
[37] Zhou T, Kuscsik Z, Liu J G, Medo M, Wakeling J R and Zhang Y C 2010 Proc. Natl. Acad. Sci. USA 107 4511
[38] Zhou M Y, Zhuo Z, Cai S M and Fu Z 2014 Chaos 24 033128
[39] Mao R, Zhang P H, Li X L, Liu X and Lu M H 2016 International Journal of Machine Learning and Cybernetics 7 311
[40] Qiu T, Chen G and Zhang Z K 2017 Chin. Phys. Lett. 34 068902
[41] Liao H, Mariani M S, Medo M, Zhang Y C and Zhou M Y 2017 Physics Reports 68 1
[42] Mao R, Cai T T, Li R H, Yu J X and Li J X 2017 World Wide Web 20 621
[43] Liao H, Zeng A, Zhou M Y, Mao R and Wang B H 2017 Communications in Nonlinear Science and Numerical Simulation 251 115
[44] Zheng A, Luo S and Xia H 2016 International Journal of Modern Physics C 27 1650002
[45] Wang T, He X S, Zhou M Y and Fu Z Q 2017 Scientific Reports 7
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
Hai-Qing Yin(尹海清), Xue Jiang(姜雪), Guo-Quan Liu(刘国权), Sharon Elder, Bin Xu(徐斌), Qing-Jun Zheng(郑清军), Xuan-Hui Qu(曲选辉). Chin. Phys. B, 2018, 27(11): 118101.
[15] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
No Suggested Reading articles found!