Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018207    DOI: 10.1088/1674-1056/25/1/018207
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Wavy structures for stretchable energy storage devices: Structural design and implementation

Lei Wen(闻雷), Ying Shi(石颖), Jing Chen(陈静), Bin Yan(严彬), Feng Li(李峰)
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  

The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical analysis of wavy structures, specific to flexible electronics, is introduced. Second, stretchable electrochemical energy storage devices with wavy structures are discussed. Finally, the present problems and challenges are reviewed, and possible directions for future research are outlined.

Keywords:  stretchable devices      lithium ion batteries      supercapacitors      wavy structure  
Received:  05 May 2015      Revised:  03 August 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932604 and 2014CB932402), the National Natural Science Foundation of China (Grant Nos. 51221264, 51172242, 51525206, and U1401243), and the Key Research Program of Chinese Academy of Sciences (Grant No. KGZD-EW-T06).

Corresponding Authors:  Feng Li     E-mail:  fli@imr.ac.cn

Cite this article: 

Lei Wen(闻雷), Ying Shi(石颖), Jing Chen(陈静), Bin Yan(严彬), Feng Li(李峰) Wavy structures for stretchable energy storage devices: Structural design and implementation 2016 Chin. Phys. B 25 018207

[1] Jeong G, Kim Y U, Kim H, Kim Y J and Sohn H J 2011 Energy. Environ. Sci. 4 1986
[2] Nishide H and Oyaizu K 2008 Science 319 737
[3] Zhou G M, Li F and Cheng H M 2014 Energy. Environ. Sci. 7 1307
[4] Koo M, Park K I, Lee S H, Suh M, Jeon D Y, Choi J W, Kang K and Lee K J 2012 Nano Lett. 12 4810
[5] Wen L, Li F, Luo H Z and Cheng H M 2015 Nanocarbons for Advanced Energy Storage (1st Edn.) (Weinheim: Wiley-VCH) pp. 127-130
[6] Gwon H, Hong J, Kim H, Seo D H, Jeon S and Kang K 2014 Energy. Environ. Sci. 7 538
[7] Sun Y Q, Wu Q O and Shi G Q 2011 Energy. Environ. Sci. 4 1113
[8] Xie K Y and Wei B Q 2014 Adv. Mater. 26 3592
[9] Feng X, Lu B W, Wu J, Lin Y, Song J Z, Song G F and Huang Y G 2014 Acta Phys. Sin. 63 014201 (in Chinese)
[10] Lu N and Yang S 2015 Curr. Opin. Solid State Mat. Sci. 19
[11] Zhang Y, Huang Y and Rogers J A 2015 Curr. Opin. Solid State Mat. Sci. 19
[12] Song J 2015 Curr. Opin. Solid State Mat. Sci. 19
[13] Wang H F, Jang Y I, Huang B Y, Sadoway D R and Chiang Y T 1999 J. Electrochem. Soc. 146 473
[14] Jackson J L 1966 Carbon. 3 397
[15] Zhang X F, Sreekumar T V, Liu T and Kumar S 2004 J. Phys. Chem. B 108 16435
[16] Berhan L, Yi Y B, Sastry A M, Munoz E, Selvidge M and Baughman R 2004 J. Appl. Phys. 95 4335
[17] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[18] Wen L, Chen J, Luo H Z and Li F 2015 Chin. Sci. Bull. 60 630 (in Chinese)
[19] Khang D Y, Jiang H Q, Huang Y and Rogers J A 2006 Science 311 208
[20] Lacour S P, Jones J, Wagner S, Li T and Suo Z G 2005 Proc. IEEE 93 1459
[21] Rogers J A, Someya T and Huang Y 2010 Science 327 1603
[22] Song J, Jiang H, Choi W M, Khang D Y, Huang Y G and Rogers J A 2008 J. Appl. Phys. 103 014303
[23] Bowden N, Brittain S, Evans A G, Hutchinson J W and Whitesides G M 1998 Nature 393 146
[24] Jones J, Lacour S P, Wagner S and Suo Z G 2004 J. Vac. Sci. Technol. 22 1723
[25] Huang Z Y, Hong W and Suo Z 2005 J. Mech. Phys. Solids 53 2101
[26] Song J, Jiang H, Huang Y and Rogers J A 2009 J. Vac. Sci. Technol. A 27 1107
[27] Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G and Rogers J A 2007 Proc. Natl. Acad. Sci. USA 104 15607
[28] Choi W M, Song J Z, Khang D Y, Jiang H Q, Huang Y G and Rogers J A 2007 Nano Lett. 7 1655
[29] Yu C, Masarapu C, Rong J, Wei B and Jiang H 2009 Adv. Mater. 21 4793
[30] Niu Z Q, Dong H B, Zhu B W, Li J Z, Hng H H, Zhou W Y, Chen X D and Xie S S 2013 Adv. Mater. 25 1058
[31] Li X, Gu T and Wei B 2012 Nano Lett. 12 6366
[32] Wang C, Zheng W, Yue Z, Too C O and Wallace G G 2011 Adv. Mater. 23 3580
[33] Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y and Xie S 2014 Nano Res. 7 1680
[34] Xie Y, Liu Y, Zhao Y, Tsang Y H, Lau S P, Huang H and Chai Y 2014 J. Mater. Chem. A 2 9142
[35] Xu P, Kang J, Choi J B, Suhr J, Yu J Y, Li F X, Byun J H, Kim B S and Chou T W 2014 Acs Nano 8 9437
[36] Chen T, Xue Y, Roy A K and Dai L 2014 Acs Nano 8 1039
[37] Zang J, Cao C, Feng Y, Liu J and Zhao X 2014 Sci. Rep. 4 6492
[38] Zhao C, Wang C Y, Yue Z L, Shu K W and Wallace G G 2013 ACS Appl. Mater. Interfaces 5 9008
[39] Lee J, Kim W and Kim W 2014 ACS Appl. Mater. Interfaces 6 13578
[40] He Y M, Chen W J, Gao C T, Zhou J Y, Li X D and Xie E Q 2013 Nanoscale 5 8799
[41] Yun J H, Han G B, Lee Y M, Lee Y G, Kim K M, Park J K and Cho K Y 2011 Electrochem. Solid State Lett. 14 A116
[42] Lee J N, Park C and Whitesides G M 2003 Anal. Chem. 75 6544
[43] McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H K, Schueller O J A and Whitesides G M 2000 Electrophoresis 21 27
[44] Sun Y G and Rogers J A 2007 J. Mater. Chem. 17 832
[45] Childs W R, Motala M J, Lee K J and Nuzzo R G 2005 Langmuir 21 10096
[46] Ouyang M, Yuan C, Muisener R J, Boulares A and Koberstein J T 2000 Chem. Mat. 12 1591
[47] Singh V, Joung D, Zhai L, Das S, Khondaker S I and Seal S 2011 Prog. Mater. Sci. 56 1178
[48] Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C and Kim J Y 2013 Energy. Environ. Sci. 6 2414
[49] Suga T, Konishi H and Nishide H 2007 Chem. Commun. 43 1730
[50] Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y G, Hwang K C, Zhang Y W and Rogers J A 2008 Proc. Natl. Acad. Sci. USA 105 18675
[51] Song J, Huang Y, Xiao J, Wang S, Hwang K C, Ko H C, Kim D H, Stoykovich M P and Rogers J A 2009 J. Appl. Phys. 105
[52] Kim D, Shin G, Kang Y J, Kim W and Ha J S 2013 Acs Nano 7 7975
[53] Xu S, Zhang Y, Cho J, et al. 2013 Nat. Commun. 4 1543
[54] Choi K H, Cho S J, Kim S H, Kwon Y H, Kim J Y and Lee S Y 2014 Adv. Funct. Mater. 24 44
[55] Choi K H, Kim S H, Ha H J, Kil E H, Lee C K, Lee S B, Shim J K and Lee S Y 2013 J. Mater. Chem. A 1 5224
[1] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[2] Electrochromic & magnetic properties of electrode materials for lithium ion batteries
Zheng-Fei Guo(郭正飞), Kun Pan(潘坤), Xue-Jin Wang(王学进). Chin. Phys. B, 2016, 25(1): 017801.
[3] Size effects in lithium ion batteries
Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国). Chin. Phys. B, 2016, 25(1): 018203.
[4] Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability
Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青). Chin. Phys. B, 2016, 25(1): 018205.
[5] Brief overview of electrochemical potential in lithium ion batteries
Jian Gao(高健), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018210.
[6] Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors
Zhou Ying (周颖), Wang Dao-Long (王道龙), Wang Chun-Lei (王春雷), Jin Xin-Xin (金新新), Qiu Jie-Shan (邱介山). Chin. Phys. B, 2014, 23(8): 086101.
[7] Ab initio studies on n-type and p-type Li4Ti5O12
Zhong Zhi-Yong(钟志勇), Nie Zheng-Xin(聂正新), Du Yan-Lan(杜燕兰), Ouyang Chu-Ying(欧阳楚英), Shi Si-Qi(施思齐), and Lei Min-Sheng(雷敏生). Chin. Phys. B, 2009, 18(6): 2492-2497.
No Suggested Reading articles found!