Simulation solution for micro droplet impingementon a flat dry surface
Sun Zhen-Hai(孙震海)a)b)c)† and Han Rui-Jing(韩瑞津)b)
aShanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; bGrace Semiconductor Manufacture Corporation, Shanghai 201203, China; bGraduate School of Chinese Academy of Sciences, Beijing 100039, China
Abstract This paper presents a computational fluid dynamics approach for micro droplet impacting on a flat dry surface. A two-phase flow approach is employed using FLUENT VOF multiphase model to calculate the flow distributions upon impact. The contact line velocity is tracked to calculate the dynamic contact angle through user defined function program. The study showed that the treatment of contact line velocity is crucial for the accurate prediction of droplet impacting on poor wettability surfaces. On the other hand, it has much less influence on the simulation of droplet impacting on good wettability surfaces. Good fit between simulation results and experimental data is obtained using this model.
Received: 19 December 2007
Revised: 15 February 2008
Accepted manuscript online:
Dynamic surface wettability of three-dimensional graphene foam Huang Wen-Bin (黄文斌), Wang Guang-Long (王广龙), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Wang Gang (王刚), Chen Min-Jiang (陈闽江), Tao Li (陶立), Deng Ya (邓娅), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.