Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090601    DOI: 10.1088/1674-1056/25/9/090601
GENERAL Prev   Next  

Fiber-based multiple-access frequency synchronization via 1f-2f dissemination

Xi Zhu(朱玺)1,3, Bo Wang(王波)1,2, Chao Gao(高超)1,2, Li-Jun Wang(王力军)1,2,3
1. Joint Institute for Measurement Science, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China;
2. Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
3. Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Considering the reference frequency dissemination requirements of the Square Kilometre Array telescope (SKA) project, on the basis of the 1f-2f precision frequency synchronization scheme, we propose and demonstrate a fiber-based multiple-access frequency synchronization scheme. The dissemination reference frequency can be recovered at arbitrary nodes along the entire fiber link. It can be applied to antennas close proximity to the SKA central station, and will lead to a better SKA frequency synchronization network. As a performance test, we recover the disseminated 100-MHz reference frequency at an arbitrary node chosen as being 5 km away from the transmitting site. Relative frequency stabilities of 2.0×10-14/s and 1.6×10-16/104s are obtained. We also experimentally verify the feasibility of a frequency dissemination link with three access points.
Keywords:  Square Kilometre Array      frequency synchronization      fiber      multiple-access  
Received:  13 April 2016      Revised:  29 April 2016      Accepted manuscript online: 
PACS:  06.30.-k (Measurements common to several branches of physics and astronomy)  
  07.60.Vg (Fiber-optic instruments)  
  06.30.Ft (Time and frequency)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ09094303).
Corresponding Authors:  Bo Wang     E-mail:  bo.wang@tsinghua.edu.cn

Cite this article: 

Xi Zhu(朱玺), Bo Wang(王波), Chao Gao(高超), Li-Jun Wang(王力军) Fiber-based multiple-access frequency synchronization via 1f-2f dissemination 2016 Chin. Phys. B 25 090601

[1] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalanker J E, DiddamsS A, Le Coq Y, Barber Z W, PoliN, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
[2] Predehl K, Grosche G, Raupach S M F, Droste S, Terra O, Alnis J, LegeroTh, Hänsch T W, UdemTh, Holzwarth R and Schnatz H 2012 Science 336 441
[3] Bercy A, Stefani F, Lopez O, Chardonnet C, Pottie P E and Klein A A 2014 Phys. Rev. A 90 061802
[4] Williams P A, Swann W C and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[5] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[6] Fujieda M, Kumagai M, Nagano S, Yamaguchi A, Hachisu H and Ido T 2011 Opt. Express 19 16498
[7] Krehlik P, Śliwczyński L, Buczek L, Kolodziej J and Lipiński M 2015 Metrologia 52 82
[8] Droste S, Ozimek F, Udem Th, Predehl K, Hänsch T W, Schnatz H, Grosche G and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[9] Fujieda M, Kumagai M and Nagano S 2010 IEEE Trans. Ultrason., Ferroelectr., Freq. Control. 57 168
[10] Lisdat C, Grosche G, Quintin N, et al. 2016 arXiv:1511.07735 [physics.atom-ph]
[11] Gao C, Wang B, Zhu X, Yuan Y B and Wang L J 2015 Rev. Sci. Instrum. 86 093111
[12] Gao C, Wang B, Chen W L, Bai Y, Miao J, Zhu X, Li T C and Wang L J 2012 Opt. Lett. 37 4690
[13] Bai Y, Wang B, Zhu X, Gao C, Miao J and Wang L J 2013 Opt. Lett. 38 3333
[14] GesineG 2014 Opt. Lett. 39 2545
[15] BercyA 2014 J. Opt. Soc. Am. B 31 678
[16] Lau K Y, Lutes G F and Tjoelker R L 2014 J. Lightwave Technol. 32 3440
[17] Du Q, Gong G and Pan W 2013 Nucl. Instrum. Meth. A 732 488
[18] Wang B, Zhu X, Gao C, Bai Y, Dong J W and Wang L J 2015 Sci. Rep. 5 13851
[19] Schediwy S W, Gozzard D, Baldwin K G, Orr B J, Bruce Warrington R, Aben G and LuitenA N 2013 Opt. Lett. 38 2893
[20] Cliche J F and Shillue B 2006 IEEE Contr. Syst. Mag. 26 19
[21] McCool R, Garrington S and Spencer R 2011 General Assembly and Scientific Symposium (IEEE, 2011) p. 1
[22] Dewdney P Baseline Design document (version 2) https://www.skatelescope.org/key-documents/
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[8] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[9] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[10] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[11] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[12] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[13] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[14] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[15] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
No Suggested Reading articles found!