Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 056102    DOI: 10.1088/1674-1056/25/5/056102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stability of concentration-related self-interstitial atoms in fusion material tungsten

Hong Zhang(张红)1, Shu-Long Wen(温述龙)1, Min Pan(潘敏)1,3, Zheng Huang(黄整)1, Yong Zhao(赵勇)1, Xiang Liu(刘翔)2, Ji-Ming Chen(谌继明)2
1. Key Laboratory of Advanced Technology of Materials, Superconductivity and New Energy R&D Center, Southwest JiaoTong University, Chengdu 610031, China;
2. Fusion Science of Southwestern Institute of Physics, Chengdu 610041, China;
3. Western Superconducting Technologies Company Limited, Xi'an 710018, China
Abstract  Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the (110) and (111) formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, (110) SIAs are more likely to exist, (111) SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material.
Keywords:  irradiation      self-interstitial atoms      fusion material      tungsten  
Received:  23 September 2015      Revised:  15 January 2016      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Az (Theory and models of radiation effects)  
  61.50.-f (Structure of bulk crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).
Corresponding Authors:  Min Pan, Zheng Huang     E-mail:  mpan@home.swjtu.edu.cn;Zhhuang@home.swjtu.edu.cn

Cite this article: 

Hong Zhang(张红), Shu-Long Wen(温述龙), Min Pan(潘敏), Zheng Huang(黄整), Yong Zhao(赵勇), Xiang Liu(刘翔), Ji-Ming Chen(谌继明) Stability of concentration-related self-interstitial atoms in fusion material tungsten 2016 Chin. Phys. B 25 056102

[1] Zinkle S J, Victoria M and Abe K 2002 J. Nucl. Mater. 307-311 31
[2] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and ASDEX Upgrade Team 2004 J. Nucl. Mater. 329-333 66
[3] Neely H H, Keefer D W and Sosin A 1968 Phys. Stat. Sol. 28 675
[4] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
[5] Zhou W H, Li Y G, Huang L F, Zeng Z and Ju X 2013 J. Nucl. Mater. 437 438
[6] Kong X S, Wu X B, You Y W, Liu C S, Fang Q F, Chen J L, Luo G N and Wang Z G 2014 Acta Mater. 66 172
[7] Soneda N, De D T and La Rubia 1998 Philos. Mag. A 78 995
[8] Fu C C, Torre J D, Willame F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68
[9] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[10] Wang J, Zhang H and Cheng X L 2013 Chin. Phys. B 22 085201
[11] Sang C F, Dai S Y, Sun J Z, Bonnin X, Xu Q, Ding F and Wang D Z 2014 Chin. Phys. B 23 115201
[12] Nguyen-Manh D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101(R)
[13] Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys. Rev. B 76 054107
[14] Lucasson G P and Walker R M 1962 Phys. Rev. 127 485
[15] Maury F, Biget M and Vajda P 1978 Radiat. Eff. 38 53
[16] Lee F, Matolich J and Moteff J 1982 Radiat. Eff. 60 53
[17] Keys L K, Smith J P and Moteff J 1968 Phys. Rev. 176 851
[18] Keys K L and Moteff J 1970 J. Nucl. Mater. 34 260
[19] Dicarlo J A, Snead C L, Jr and Goland A N 1969 Phys. Rev. 178 1059
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[8] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[9] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[10] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[11] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[12] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[13] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[14] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[15] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
No Suggested Reading articles found!