Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038901    DOI: 10.1088/1674-1056/25/3/038901

Successive lag synchronization on dynamical networks with communication delay

Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞)
School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
Keywords:  successive lag synchronization      dynamical network      communication delay      feedback control  
Received:  29 May 2015      Revised:  20 September 2015      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61004101), the Natural Science Foundation Program of Guangxi Province, China (Grant No. 2015GXNSFBB139002), the Graduate Innovation Project of Guilin University of Electronic Technology, China (Grant No. GDYCSZ201472), and the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, China.
Corresponding Authors:  Ke-Zan Li     E-mail:

Cite this article: 

Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞) Successive lag synchronization on dynamical networks with communication delay 2016 Chin. Phys. B 25 038901

[1] Zhou Y, Zhu S Q and Wu L 2005 Commun. Thoer. Phys. 44 1076
[2] Gu X H, Zhu S Q and Wu D 2007 Commun. Thoer. Phys. 48 1055
[3] Kwon O M, Park J H and Lee S M 2011 Nonlinear Dyn. 63 239
[4] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[5] Vieira M D 1999 Phys. Rev. Lett. 82 201
[6] Creveling D R, Jeanne J M and Abarbanel H D 2008 Phys. Lett. A 372 2043
[7] Xiao Y Z, Xu W, Li X C and Tang S F 2008 Chin. Phys. B 17 80
[8] Chen J and Liu Z R 2005 Appl. Math. Mech. 26 1132
[9] Wu W, Zhou W J and Chen T P 2009 IEEE Trans. Circuits Syst. I 56 829
[10] Ma Z J, Zhang S Z, Jiang G R and Li K Z 2013 Nonlinear Dyn. 74 55
[11] Li X and Chen Y 2007 Commun. Thoer. Phys. 48 132
[12] Li X W and Zheng Z G 2007 Commun. Thoer. Phys. 47 265
[13] Shahverdiev E M, Sivaprakasam S and Shore K A 2002 Phys. Lett. A 292 320
[14] Dai H, Jia L X and Zhang Y B 2012 Chin. Phys. B 21 120508
[15] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[16] Li B, Yang D, Zhang X H and Ma L T 2007 Acta Automat. Sinica 33 1196
[17] Zhang Q X, Lu J A and Jia Z 2009 Commun. Thoer. Phys. 51 679
[18] Li G H 2009 Chaos Solition. Fract. 41 2630
[19] Huang Y H, Wang Y W and Xiao J W 2009 Chaos Solition. Fract. 40 766
[20] Li K Z, Yu W W and Ding Y 2015 Nonlinear Dyn. 80 421
[21] Liu C L and Tian Y P 2007 Proceedings of the 26th Chinese Control Conference, July 26-31, 2007, Zhangjiajie, China, p. 4060
[22] Chen T P, Liu X W and Lu W L 2007 IEEE Trans. Circuits Syst. I 54 1317
[23] Li K Z, Zhou J, Yu W W, Small M and Fu X C 2014 Appl. Math. Model. 38 1300
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[3] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
[4] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[5] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[6] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[7] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
[8] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng (周峰), Wang Zheng-Jie (王正杰), Fan Ning-Jun (范宁军). Chin. Phys. B, 2015, 24(2): 020203.
[9] Model-based predictive controller design for a class of nonlinear networked systems with communication delays and data loss
An Bao-Ran (安宝冉), Liu Guo-Ping (刘国平). Chin. Phys. B, 2014, 23(8): 080202.
[10] A control method applied to mixed traffic flow for the coupled-map car-following model
Cheng Rong-Jun (程荣军), Han Xiang-Lin (韩祥临), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(3): 030507.
[11] Dissipative preparation of a steady three-dimensional entangled state via quantum-jump-based feedback
Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(3): 030301.
[12] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou (郑亚周), Zheng Peng-Jun (郑彭军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(2): 020503.
[13] Feedback control of wave segments in excitable medium
Wu Ning-Jie (吴宁杰), Gao Hong-Jun (高洪俊), Ying He-Ping (应和平). Chin. Phys. B, 2013, 22(5): 050501.
[14] Hash function construction using weighted complex dynamical networks
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2013, 22(4): 040506.
[15] Chaotic dynamic behavior analysis and control for a financial risk system
Zhang Xiao-Dan (张晓丹), Liu Xiang-Dong (刘祥东), Zheng Yuan (郑媛), Liu Cheng (刘澄). Chin. Phys. B, 2013, 22(3): 030509.
No Suggested Reading articles found!