Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027202    DOI: 10.1088/1674-1056/25/2/027202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Infrared laser-induced fast photovoltaic effect observed in orthorhombic tin oxide film

Song-Qing Zhao(赵嵩卿)1,2,3,4,5, Ji-Rui Zhang(张际蕊)5, Hong-Jie Shi(施宏杰)5, Kun-Kun Yan(闫坤坤)5, Chun Huang(黄春)2, Li-Min Yang(杨立敏)1,2,3,4,5, Rui Yang(杨睿)5, Kun Zhao(赵昆)1,2,3,4,5
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;
2. Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China Petroleum and Chemical Industry Federation (CPCIF), Beijing 100723, China;
3. Key Laboratory of Optical Sensing and Detecting Technology, China University of Petroleum, Beijing 102249, China;
4. Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China;
5. College of Science, China University of Petroleum (Beijing), Beijing 102249, China
Abstract  The SnO2/SnO with an orthorhombic structure is a material known to be stable at high pressures and temperatures and expected to have new optical and electrical properties. The authors report a new finding of the infrared laser induced a fast photovoltaic effect arising from orthorhombic tin oxide film with an indirect band gap (~ 2.4 eV) which is deposited by pulsed laser deposition. The rising time of the photovoltaic signal is about 3 ns with a peak value of 4.48 mV under the pulsed laser beam with energy density 0.015 mJ/mm2. The relation between the photovoltages and laser positions along the line between two electrodes of the film is also exhibited. A possible mechanism is put forward to explain this phenomenon. All data and analyses demonstrate that the orthorhombic tin oxide with an indirect band gap could be used as a candidate for an infrared photodetector which can be operated at high pressures and temperatures.
Keywords:  polycrystalline tin oxide film      orthorhombic      infrared laser induced      lateral photovoltaic effect (LPV)      indirect band gap  
Received:  31 July 2015      Revised:  15 October 2015      Accepted manuscript online: 
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  78.66.-w (Optical properties of specific thin films)  
  78.68.+m (Optical properties of surfaces)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60877038).
Corresponding Authors:  Song-Qing Zhao     E-mail:  zhaosongqing@aliyun.com

Cite this article: 

Song-Qing Zhao(赵嵩卿), Ji-Rui Zhang(张际蕊), Hong-Jie Shi(施宏杰), Kun-Kun Yan(闫坤坤), Chun Huang(黄春), Li-Min Yang(杨立敏), Rui Yang(杨睿), Kun Zhao(赵昆) Infrared laser-induced fast photovoltaic effect observed in orthorhombic tin oxide film 2016 Chin. Phys. B 25 027202

[1] Dominguez J E, Fu L and Pan X Q 2002 Appl. Phys. Lett. 81 5168
[2] Mohammad M T 1990 Solar Energy Mater. 20 297
[3] Chen Z W, Lai J K L and Shek C H 2004 Phys. Rev. B 70 165314
[4] Chen Z W, Lai J K L and Shek C H 2006 Appl. Phys. Lett. 88 033115
[5] Ng H T, Li J, Smith M K, Nguyen P, Cassell A, Han J and Meyyappan M 2003 Science 300 1249
[6] Cheng B, Russell J M, Shi W S, Zhang L and Samulski E T 2004 J. Am. Chem. Soc. 126 5972
[7] Güven Turgut, Adem Koçyiğit and Erdal Sönmez 2015 Chin. Phys. B 24 0107301
[8] Guo X, Guo C W, Chen Y and Su Z P 2014 Chin. Phys. B 23 076403
[9] Suito K, Kawai N and Masuda Y 1975 Mater. Res. Bull. 10 677
[10] Liu L G 1978 Science 199 422
[11] Chen Z Whiwen, Lai Joseph K L and Shek Chan-Hung 2006 Appl. Phys. Lett. 89 231902
[12] Godbole V P, Vispute R D, Chaudhari S M, Kanetkar S M and Ogale S B 1990 J. Mater. Res. 5 372
[13] Prades J D, Arbiol J, Cirera A, Morante J R, Avella M, Zanotti L, Comini E, Faglia G and Sberveglieri G 2007 Sensors and Actuators B 126 6
[14] Young A P and Schwartz C M 1969 J. Phys. Chem. Solids 30 249
[15] Henry J and Livingstone J 2002 Proceedings of IEEE Sensors 2002 pp. 836-840
[16] Henry J and Livingstone J 2004 J. Phys. D: Appl. Phys. 37 3180
[17] Martins R and Fortunato E 1999 Thin Solid Films 337 158
[18] Fortunato E, Lavareda G, Vieira M and Martins R 1994 Rev. Sci. Instrum. 65 3784
[19] Lu J and Wang H 2011 Opt. Opt. Express 19 13806
[1] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[2] Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国). Chin. Phys. B, 2017, 26(12): 127101.
[3] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
[4] Band gap anomaly and topological properties in lead chalcogenides
Simin Nie(聂思敏), Xiao Yan Xu(许霄琰), Gang Xu(徐刚), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(3): 037311.
[5] Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis
Qurat-ul-ain Javed, Wang Feng-Ping, M. Yasir Rafique, Arbab Mohammad toufiq, M. Zubair Iqbal. Chin. Phys. B, 2012, 21(11): 117311.
[6] Magnetization of mixed ferri-ferrimagnets composed of Prussian blue analogs A1xA21-xB
Jiang Wei(姜伟), Guan Hong-Yu(关宏宇), and Lo Veng-Cheong(罗永祥). Chin. Phys. B, 2011, 20(5): 057501.
No Suggested Reading articles found!