Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117311    DOI: 10.1088/1674-1056/21/11/117311
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis

Qurat-ul-ain Javed, Wang Feng-Ping, M. Yasir Rafique, Arbab Mohammad toufiq, M. Zubair Iqbal
Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  We have reported new magnetic and optical properties of Mn2O3 nanostructures. The nanostructures have been synthesized by hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV-visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn2O3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn2O3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at TN = 83 K. Furthermore, the Mn2O3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remanent magnetization (1.52 emu/g). The UV-visible spectrophotometry was used to determine the transmittance behavior of Mn2O3 nanostructures. Direct optical band gap of 1.2 eV was acquired by using Davis-Mott model. The UV-visible spectrum indicates that the absorption is prominent in visible region, and transparency is more than 80% in UV region.
Keywords:  Mn2O3 orthorhombic nanocrystals      UV transparency      canted antiferromagnetic property  
Received:  26 June 2012      Revised:  14 July 2012      Accepted manuscript online: 
PACS:  73.63.Bd (Nanocrystalline materials)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the Fundamental Development Fund and Chancellor Scholarship Program, China (Grant No. YJ2010-014) and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-BR-09-007A).
Corresponding Authors:  Wang Feng-Ping     E-mail:  fpwang@ustb.edu.cn

Cite this article: 

Qurat-ul-ain Javed, Wang Feng-Ping, M. Yasir Rafique, Arbab Mohammad toufiq, M. Zubair Iqbal Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis 2012 Chin. Phys. B 21 117311

[1] Euna J, Changsoo K and Soonchil L 2011 New J. Phys. 13 013018
[2] Yang Z, Zhang Y, Wang X, Qian Y, Wen X and Yang S 2006 J. Solid State Chem. 17 679
[3] Thackeray M M 1997 Prog. Solid State Chem. 25 1
[4] Lee H, Huh S H, Jeong J W, Choi Y J, Kim S H and Ri H C 2002 J. Am. Chem. Soc. 124 12094
[5] Nasser A B M, DoWoo K, Ansari S G, Ahn K J, Kanjwal M A and Kim H K 2009 Appl. Phys. A 95 769
[6] Jothiramalingam R and Wang M K 2101 J. Porous. Mater. 17 677
[7] Chugai Electric Industrial Co. Ltd, Jpn. Kokai Tokyo Koho JP 02, 35915 [90, 35, 915], February 6 (1990)
[8] Yan D, Cheng S, Zhuo R F, Chen J T, Feng J J, Feng H T, Li H J, Wu Z G, Wang J and Yan P X 2009 Nanotechnol. 20 105706
[9] Ashoka S, Chithaiah P, Tharamani C N and Chandrappaa G T 2010 J. Exp. Nanosci. 5 285
[10] Yang Z, Zhang W, Wang Q, Song X and Qian Y 2006 Chem. Phys. Lett. 418 46
[11] Regulski M, Przenioslo R, Sosnowska I, Howhlwein D and Schneider R 2004 J. Alloys Compd. 362 236
[12] Geller S, Grant R W, Cape J A and Espinosa G P 1967 J. Appl. Phys. 38 1457
[13] Grant R W, Geller S, Cape J A and Espinosa G P 1968 Phys. Rev. 175 686
[14] Geller S and Espinosa G P 1970 Phys. Rev. B 1 3763
[15] Ahmad T, Ramanujachary V K, Lofland E S and Ganguli K A 2004 J. Mater. Chem. 14 3406
[16] Jinkwon K, Sujin H, Konstantin I P, Jesse M M and Joel S M 2005 Inorg. Chem. 44 6983
[17] Xiang S, Wu X, Zhang J, Fu R, Hu S and Zhang X 2005 J. Am. Chem. Soc. 127 16352
[18] Jamie L M, Carmen R K, Huang Q Z, Jeffrey W L, Goetz M B, Silvina P, Peter W S, Louise M L, Arnold L R, Arthur J E and Joel S M 1998 Chem. Mater. 10 2552
[19] Zhang Z, Sun H, Shao X, Li D, Yu H and Han M 2005 Adv. Mater. 17 42
[20] Ponpandian N, Narayanasamy, Chinnasamy C N and Sivakuma N 2005 Appl. Phys. Lett. 86 192510
[21] Bhowmik R N 2004 Phys. Rev. B 169 054430
[22] Yi J B, Ding J, Feng Y P, Peng G W, Chow G M, Kawazoe Y, Liu B H, Yin J H and Thongmee S 2007 Phys. Rev. B 76 224402
[23] Makhlouf S A, Parker F T, Speda F E and Berkowitz A E 1997 J. Appl. Phys. 81 5561
[24] Dionne F G 2009 Magnetic Oxides 161
[25] He X, Wu J, Zhao L, Meng J, Gao X and Li X 2008 Solid State Commun. 147 90
[26] Xiang X, Cheng X F, He S B, Yuan X D, Zheng W G, Li Z J, Liu C M, Zhou W L and Zhu X T 2011 Chin. Phys. B 20 127801
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[3] Impeding anion exchange to improve composition stability of CsPbX3 (X=Cl, Br) nanocrystals through facilely fabricated Cs4PbX6 shell
Zhaohui Shen(申朝晖), Pengjie Song(宋鹏杰), Bo Qiao(乔泊), Jingyue Cao(曹靖玥), Qiongyu Bai(白琼宇), Dandan Song(宋丹丹), Zheng Xu(徐征), Suling Zhao(赵谡玲), Gaoqian Zhang(张高倩), Yuanjun Wu(吴元均). Chin. Phys. B, 2019, 28(8): 086102.
[4] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[5] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠). Chin. Phys. B, 2015, 24(6): 067306.
[6] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[7] Synthesis and electrical conductivity of nanocrystalline tetragonal FeS
Zeng Shu-Lin (曾树林), Wang Hui-Xian (王辉宪), Dong Cheng (董成). Chin. Phys. B, 2014, 23(8): 087203.
[8] Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction
Li Yong (李勇), Wang Ling-Li (王伶俐), Wang Xiao-Bo (王小波), Yan Ling-Ling (闫玲玲), Su Li-Xia (苏丽霞), Tian Yong-Tao (田永涛), Li Xin-Jian (李新建). Chin. Phys. B, 2014, 23(8): 087307.
[9] Introduction to ChinaNANO 2013
Wei Zhi-Xiang (魏志祥), Zhu Xing (朱星). Chin. Phys. B, 2014, 23(8): 088101.
[10] Hybrid solar cell based on polythiophene and GaN nanoparticles composite
Feng Qian (冯倩), Shi Peng (时鹏), Li Yu-Kun (李宇坤), Du Kai (杜锴), Wang Qiang (王强), Feng Qing (冯庆), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(2): 028802.
[11] Dislocation-mediated creep process in nanocrystalline Cu
Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青). Chin. Phys. B, 2013, 22(3): 037303.
[12] Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD
Hou Guo-Fu(侯国付), Geng Xin-Hua(耿新华), Zhang Xiao-Dan(张晓丹), Sun Jian(孙建), Zhang Jian-Jun(张建军), and Zhao Ying(赵颖). Chin. Phys. B, 2011, 20(7): 077802.
[13] Adsorption-controlled transition of the electrical properties realized in Hematite (alpha-Fe2O3) nanorods ethanol sensing
Wang Chong(王翀), Wang Fei-Fei(王菲菲), Fu Xing-Qiu(付星球), Zhang En-Di(张恩迪), and Xu Zhi(许志). Chin. Phys. B, 2011, 20(5): 050701.
[14] Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy
Yang Yu-Ping(杨玉平), Zhang Zhen-Wei(张振伟), Shi Yu-Lei(施宇蕾), Feng Shuai(冯帅), and Wang Wen-Zhong(王文忠). Chin. Phys. B, 2010, 19(4): 043302.
[15] Field emission characteristics of nano-sheet carbon films deposited by quartz-tube microwave plasma chemical vapour deposition
Gu Guang-Rui(顾广瑞), Jin Zhe(金哲), and Ito Toshimichi . Chin. Phys. B, 2008, 17(4): 1467-1471.
No Suggested Reading articles found!