Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026202    DOI: 10.1088/1674-1056/19/2/026202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure

Jiang Heng(姜恒)a)b), Wang Yu-Ren(王育人) b)†, Zhang Mi-Lin(张密林)a), Hu Yan-Ping(胡燕萍)b), Lan Ding(蓝鼎)b), Wu Qun-Li(吴群力)c), and Lu Huan-Tong(逯还通) c)
a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; b Key Laboratory of Microgravity Science, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; c BSWA Technology Co., Ltd., Beijing 100029, China
Abstract  The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Keywords:  underwater acoustic absorption      wide frequency      locally resonant unit      interpenetrating networks  
Received:  30 May 2009      Revised:  16 July 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  62.65.+k (Acoustical properties of solids)  
  43.30.Es (Velocity, attenuation, refraction, and diffraction in water, Doppler effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10832011) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08).

Cite this article: 

Jiang Heng(姜恒), Wang Yu-Ren(王育人), Zhang Mi-Lin(张密林), Hu Yan-Ping(胡燕萍), Lan Ding(蓝鼎), Wu Qun-Li(吴群力), and Lu Huan-Tong(逯还通) Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure 2010 Chin. Phys. B 19 026202

[1] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2000 Science 289 1734
[2] Goffaux C, Sánchez-Dehesa J, Yeyati A L, Lambin P, Khelif A, Vasseur JO and Djafari-Rouhani B 2002 Phys Rev. Lett. 88 225502
[3] Goffaux C and Sánchez-Dehesa J 2003 Phys. Rev. B 67 144301
[4] Ho K M, Cheng C K, Yang Z, Zhang X X and Sheng P 2003 Appl. Phys. Lett. 8 3 5566
[5] Sheng P, Zhang X X, Liu Z and Chan C T 2003 Physica B 338 201
[6] Hirsekorn M, Delsanto P P, Batra N K and Matic P 2004 Ultrasonics 42 231
[7] Hirsekorn M 2004 Appl. Phys. Lett. 84 3364
[8] Wang G, Wen X, Wen J, Shao L and Liu Y 2004 Phys. Rev. Lett. 9 3 154302
[9] Liu Z, Chan C T and Sheng P 2005 Phys. Rev. B 71 014103
[10] Yu D L, Wang G, Liu Y Z, Wen J H and Qiu J 2006 Chin. Phys. 15 266
[11] Wang G, Liu Y Z, Wen J H and Yu D L 2006 Chin. Phys. 15 407
[12] Hirsekorn M, Delsanto P P, Leung A C and Matic P 2006 J. Appl. Phys. 99 124912
[13] Larabi H, Pennec Y, Djafari-Rouhani B and Vasseur J O 2007 Phys. Rev. E 75066601
[14] Zhao H G, Liu Y Z, Wen J H, Yu D L, Wang G and Wen X S 2006 Chin. Phys. Lett. 23 2132
[15] Zhao H, Liu Y, Yu D, Wang G, Wen J and Wen X 2007 J. Sound Vib. 30 3 185
[16] Gaunaurd G, Scharnhorst K P and üerall H 1979 J. Acoust. Soc. Am. 65 573
[17] Lim R and Hackman R H 1990 J. Acoust. Soc. Am. 87 1076
[18] Hinders M K, Rhodes B A and Fang T M 1995 J. Sound Vib. 185 219
[19] Odell D, Hertel K and Nelson C 2002 Oceans Conference Record (IEEE) 1 266
[20] Heinemann M, Larraza A and Smith K B 2003 J. Acoust. Soc. Am. 11 3 3111
[21] Ivansson S 2005 Nonlinear Analysis 6 3 e1541
[22] Ivansson S 2006 J. Acoust. Soc. Am. 119 3558
[23] Huang S L and Lai J Y 1995 J. Membrane. Sci. 105 137
[24] Huang S L and Lai J Y 1997 Eur. Polym. J. 3 3 1563
[25] Zwikker C and Kosten C W 1949 Sound Absorption Materials(New York: Elsevier Pub. Co.) p. 2
[26] He Z Y and Zhao Y F 1981 Fundamentals of Theoretical Acoustics}(Beijing: National Defennse Industry Press) p. 353 (in Chinese)
[27] Huang K and Han R Q 2002 Solid State Physics(Beijing: High Education Press) p. 92 (in Chinese)
[28] Jensen J S 2003 J. Sound Vib. 266 1053
[29] Wen J H, Wang G, Liu Y Z and Yu D L 2004 Acta Phys. Sin. 5 3 3384 (in Chinese)
[30] Wang G, Wen J, Liu Y and Wen X 2004 Phys. Rev. B 69 184302
[31] Wang G, Wen J and Wen X 2005 Phys. Rev. B 71 104302
[32] Wang G, Shao L H, Liu Y Z and Wen J H 2006 Chin. Phys. 15 1843
[1] Design of scale model of plate-shaped absorber in a wide frequency range
Li-Ming Yuan(袁黎明), Yong-Gang Xu(许勇刚), Wei Gao(高伟), Fei Dai(戴飞), Qi-Lin Wu(吴琪琳). Chin. Phys. B, 2018, 27(4): 044101.
No Suggested Reading articles found!