Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128902    DOI: 10.1088/1674-1056/25/12/128902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synchronization investigation of the network group constituted by the nearest neighbor networks under inner and outer synchronous couplings

Ting-Ting Li(李亭亭), Cheng-Ren Li(李成仁), Chen Wang(王晨), Fang-Jun He(何芳君), Guang-Ye Zhou(周光冶), Jing-Chang Sun(孙景昌), Fei Han(韩非)
School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
Abstract  

A new synchronization technique of inner and outer couplings is proposed in this work to investigate the synchronization of network group. Some Haken-Lorenz lasers with chaos behaviors are taken as the nodes to construct a few nearest neighbor complex networks and those sub-networks are also connected to form a network group. The effective node controllers are designed based on Lyapunov function and the complete synchronization among the sub-networks is realized perfectly under inner and outer couplings. The work is of potential applications in the cooperation output of lasers and the communication network.

Keywords:  synchronization of network group      inner and outer couplings      Haken-Lorenz laser      nearest neighbor network  
Received:  30 December 2015      Revised:  28 June 2016      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11004092), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020079 and 201602455), and the Foundation of Education Department of Liaoning Province, China (Grant No. L201683665)

Corresponding Authors:  Cheng-Ren Li     E-mail:  lshdg@sina.com

Cite this article: 

Ting-Ting Li(李亭亭), Cheng-Ren Li(李成仁), Chen Wang(王晨), Fang-Jun He(何芳君), Guang-Ye Zhou(周光冶), Jing-Chang Sun(孙景昌), Fei Han(韩非) Synchronization investigation of the network group constituted by the nearest neighbor networks under inner and outer synchronous couplings 2016 Chin. Phys. B 25 128902

[1] Liu G, Li Y S and Zhang X P 2013 Chin. Phys. B 22 068901
[2] Li C G and Maini P K 2005 J. Phys. A:Math. Gen. 38 9741
[3] Amani T, Jordi M, Ali K and Kaher T 2014 Chin. Phys. B 23 046101
[4] Nicosia V, Domenico M D and Latora V 2014 Europhys. Lett. 106 58005
[5] Shi C H, Peng Y F, Zhuo Y, Tang J Y and Long K P 2012 Phys. Scr. 85 035803
[6] Li M H, GuanS G and Lai C H 2010 New J. Phys. 12 103032
[7] Hu T C and Sun W G 2013 Phys. Scr. 87 015001
[8] Zhao J C 2013 Chin. Phys. B 22 060506
[9] Dai H, Si G Q, Jia L X and Zhang Y B 2014 Phys. Scr. 89 075204
[10] Li K Z, He E, Zeng Z R and Xie Z G 2013 Chin. Phys. B 22 070504
[11] Zhang Z Z, Zeng S Y, Tang W Y, Hu J L, Zeng S W, Ning W L, Qiu Y and Wu H S 2012 Chin. Phys. B 21 108701
[12] D'Huys O, Zeeb S, Jüngling T, Heiligenthal S, Yanchuk S and Kinzel W 2013 Europhys. Lett. 103 10013
[13] Poria S, Khan M A and Nag M 2013 Phys. Scr. 88 015004
[14] Wang W P, Li L X, Peng H P, Xiao J H and Yang Y X 2014 Nonlinear Dyn. 76 591
[15] Lü L, Li C R and Chen L S 2014 Nonlinear Dyn. 76 1633
[16] Luo Q, Wu W, Li L X, Yang Y X and Peng H P 2008 Acta Phys. Sin. 57 1529 (in Chinese)
[17] Lü L and Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese)
[18] Zhang H G, Zhao M and Wang Z L 2014 Nonlinear Dyn. 77 643
[19] Jin Y G, Zhong S M and An N 2015 Chin. Phys. B 24 049202
[20] Xu Y H, Zhou W N, Fang J A and Lu H Q 2009 Phys. Lett. A 374 272
[21] Wei Q and Xie X J 2015 Mod. Phys. C 26 1550060
[22] Gu W F, Liao X H, Zhang L S, Huang X H, Hu G and Mi Y Y 2013 Europhys. Lett. 102 28001
[23] Jalan S, Singh A 2016 Europhys. Lett. 113 30002
[24] Singh A, Ghosh S, Jalan S, et al. 2015 Europhys. Lett. 111 30010
[25] Burgarth D and Giovannetti V 2007 New J. Phys. 9 150
[26] Luo Q, Yang H, Han J X, Li L X and Yang Y X 2010 J. Phys. A:Math. Theor. 43 495101
[27] Zhao J L, Wang J and Wang H 2012 Acta Phys. Sin. 61 110209 (in Chinese)
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[4] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[5] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[6] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[7] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[8] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[9] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[10] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[14] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[15] Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2021, 30(12): 120505.
No Suggested Reading articles found!