Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124312    DOI: 10.1088/1674-1056/25/12/124312
SPECIAL TOPIC—Acoustics Prev   Next  

Research on the acoustic scattering function and coherence properties from rough seafloor based on finite element model

Bo Lei(雷波), Yi-Xin Yang(杨益新), Yuan-Liang Ma(马远良), Dong-Xu Chen(陈东旭)
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

Acoustic scattering from a rough sea bottom is recognized as a main source of reverberation. In this study, scattering properties from a layered bottom were exploited based on the finite element model. The scattering strength and loss from the layered rough seabed were investigated by ensembling the realizations of rough interface. They were found to be dependent on the thickness of sediment, and interference was significant in the case of thin sediment. Through verification of the finite element model, the scattering loss could be evaluated using the Eckart model with a proper sound speed in the thick sediment. The multiple scattering effect on the sound field was also exploited. It revealed that the effect depended strongly on the bottom type.

Keywords:  finite element      rough seafloor      scattering function      coherence  
Received:  25 July 2016      Revised:  27 September 2016      Accepted manuscript online: 
PACS:  43.30.Hw (Rough interface scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61571366), the Natural Science Basic Research in Shaanxi Province of China (Grant No. 2015JQ5199), and the Fund of Science and Technology from the Underwater Test and Control Laboratory (Grant No. 9140c260201130c26096).

Corresponding Authors:  Yi-Xin Yang     E-mail:  yxyang@nwpu.edu.cn

Cite this article: 

Bo Lei(雷波), Yi-Xin Yang(杨益新), Yuan-Liang Ma(马远良), Dong-Xu Chen(陈东旭) Research on the acoustic scattering function and coherence properties from rough seafloor based on finite element model 2016 Chin. Phys. B 25 124312

[1] Williams K L, Grochocinski J M and Jackson D R 2001 J. Acoust. Soc. Am. 110 2956
[2] Yang T, Broschat S L and Galea C 2002 IEEE J. Ocean. Eng. 27 403
[3] Thorsos E I 1988 J. Acoust. Soc. Am. 83 78
[4] Soukup R J, Canepa G, Simpson H J, Summers J E and Gragg R F 2007 J. Acoust. Soc. Am. 122 2551
[5] Gragg R F, Wurmser D and Gauss R C 2001 J. Acoust. Soc. Am. 110 2878
[6] Tracey B H and Schmidt H 1999 J. Acoust. Soc. Am. 106 2524
[7] Ivakin A N 1994 Proceeding of the Third International Congress on Air-and Structure-Borne Sound and Vibration, 3, p. 1563
[8] Jackson D R, Odom R I, Boyd M L and Ivakin A N 2010 IEEE J. Ocean. Eng. 35 603
[9] Isakson M J and Chotiros N P 2015 IEEE J. Ocean. Eng. 40 475
[10] Bonomo A L, Isakson M J and Chotiros N P 2015 J. Acoust. Soc. Am. 137 EL235
[11] Jackson D and Richardson M 2007 High-frequency seafloor acoustics (New York:Springer Science & Business Media) pp. 475-482
[12] Ihlenburg F 1998 Appl. Math. Sci. 132 ch2
[13] Amestoy P, Duff I and L'Excellent J Y 2005 URL:http://mumps.enseeiht.fr
[14] COMSOL AB 2012 COMSOL multiphysics user guide (Version 4.3a)
[15] Berenger J P 1996 IEEE Trans. on Antennas Propagation 44 110
[16] Zampolli M, Tesei A, Jensen F B, Malm N and Blottman J B 2007 J. Acoust. Soc. Am. 122 1472
[17] Zampolli M, Jensen F B and Tesei A 2009 J. Acoust. Soc. Am. 125 89
[18] Kapp D A 1995 "A new method to calculate wave scattering from rough surfaces at low grazing angles", Ph. D. Dissertation (Department of Mecharical Engeneering, Virginia Polytechnic State University, USA)
[19] Murray J and Ensberg D 1996 The swellex-96 experiment. URL:http://www.mpl.ucsd.edu/swellex96/
[20] Eckart C 1953 J. Acoust. Soc. Am. 25 566
[21] Tracey B H 1996 An Integrated Modal Approach to Surface and Volume Scattering in Ocean Acoustic Waveguides (DTIC Document).
[22] Porter M B 1992 The KRAKEN normal mode program (DTIC Document)
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[6] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[7] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[8] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[9] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[10] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[11] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[12] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[13] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[14] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[15] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
No Suggested Reading articles found!