Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090206    DOI: 10.1088/1674-1056/19/9/090206
GENERAL Prev   Next  

Spatial pattern formation of a ratio-dependent predator–prey model

Lin Wang(林望)†ger
College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China
Abstract  This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator–prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.
Keywords:  ratio-dependent predator–prey model      Holling III functional response      diffusion-driven instability      pattern formation  
Received:  28 October 2009      Revised:  24 December 2009      Accepted manuscript online: 
PACS:  0290  
  0565  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. Y7080041).

Cite this article: 

Lin Wang(林望) Spatial pattern formation of a ratio-dependent predator–prey model 2010 Chin. Phys. B 19 090206

[1] Turing A M 1952 Philos. Trans. R. Soc. London B 237 37
[2] Ouyang Q and Swinney H L 1991 Nature bf 352 610
[3] Li C P and Shen K 2003 Chin. Phys. bf 12 184
[4] Gao Z Y and Lu Q S 2007 Chin. Phys. bf 16 2479
[5] Sun G Q, Jin Z, Liu Q X and Li L 2008 Chin. Phys. B 17 3936
[6] Medvinsky A B, Petrovskii S V, Tikhonova I A, Malchow H and Li B L 2002 Siam. Rev. 44 311
[7] Wang W, Liu Q X and Jin Z 2007 Phys. Rev. E 75 051913
[8] Zhang L, Wang W and Xue Y 2009 Chaos, Solitons and Fractals 41 38
[9] Fan Y H, Li W T and Wang L L 2004 Nonlinear Analysis: Real World Applications 5 247
[10] Hsu S B, Hwang T W and Kuang Y 2001 Journal of Mathematical Biology 42 489
[11] Kuang Y 1999 Differential Equations with Applications to Biology 21 325
[12] Xiao D and Li W 2003 Proceedings of the Edinburgh B Mathematical Society 46 205
[13] Xu R, Chaplain M A J and Davidson F A 2004 Applied Mathematics and Computation 158 729
[14] Berezovskaya F, Karev G and Arditi R 2001 Journal of Mathematical Biology bf 43 221
[15] Fan Y H and Li W T 2004 Journal of Mathematical Analysis and Applications 299 357
[16] Liu X X and Huang L H 2009 Applied Mathematical Modelling 33 683
[17] Wang L L and Li W T 2004 Journal of Computational and Applied Mathematics 162 341
[18] Matsuda H and Katsukawa T 2002 Fisheries Oceanography 11 366
[19] Ahmad S and M R M Rao 1999 Theory of Ordinary Differential Equations: with Applications in Biology and Engineering (New Delhi: East-West Press) 50
[20] Murray J D 2003 Mathematical Biology (New York: Springer) 68
[21] Alonso D, Bartumeus F and Catalan J 2002 Ecology 83 28
[22] Yang L and Epstein I R 2003 Phys. Rev. Lett. bf 90 178303
[23] Garvie M R 2007 Bulletin of Mathematical 69 931
[24] Sherratt J A, Eagan B T and Lewis M A 1997 Philosophical Transactions: Biological Sciences 352 21
[25] Wang W, Zhang L, Wang H and Li Z 2008 arXiv:0801.0796 endfootnotesize
[1] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[2] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[3] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[4] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[5] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[6] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[7] Dendritic sidebranches of a binary system with enforced flow
Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东). Chin. Phys. B, 2010, 19(12): 126401.
[8] Three-dimensional interfacial wave theory of dendritic growth: (I). multiple variables expansion solutions
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 671-685.
[9] Three-dimensional interfacial wave theory of dendritic growth: (II). non-axi-symmetric global wave modes and selection criterion of pattern formation
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 686-698.
[10] Laser-induced pattern formation from homogeneous polyisoprene solutions
Lin Dian-Yang(林殿阳), Li Ming(黎明), Wang Shu-Jie(王淑杰), and Lü Zhi-Wei(吕志伟). Chin. Phys. B, 2008, 17(6): 2156-2159.
No Suggested Reading articles found!