Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050202    DOI: 10.1088/1674-1056/24/5/050202
GENERAL Prev   Next  

Generalized symmetries of an N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system

Wang Jian-Yong (王建勇)a b, Tang Xiao-Yan (唐晓艳)c d, Liang Zu-Feng (梁祖峰)e, Lou Sen-Yue (楼森岳)f g
a Department of Mathematics and Physics, Quzhou University, Quzhou 324000, China;
b Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
c Institute of Systems Science, East China Normal University, Shanghai 200241, China;
d The Abdus Salam International Center for Theoretical Physics, Trieste 34100, Italy;
e Department of Physics, Hangzhou Normal University, Hangzhou 310036, China;
f Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China;
g Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
Abstract  The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely many generalized symmetries with an arbitrary function f(t). Some interesting special cases of symmetry algebras are presented, including a limit case f(t)=1 related to the commutativity of higher order generalized symmetries.
Keywords:  formal series symmetry approach      generalized symmetry      infinite dimensional Lie algebra      supersymmetric Boiti–Leon–Manna–Pempinelli system  
Received:  21 October 2014      Revised:  29 December 2014      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  11.30.Pb (Supersymmetry)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275123, 11175092, 11475052, and 11435005), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), and the Talent Fund and K C Wong Magna Fund in Ningbo University, China.
Corresponding Authors:  Tang Xiao-Yan     E-mail:  xytang@sist.ecnu.edu.cn
About author:  02.30.Jr; 11.30.Pb; 02.20.Sv

Cite this article: 

Wang Jian-Yong (王建勇), Tang Xiao-Yan (唐晓艳), Liang Zu-Feng (梁祖峰), Lou Sen-Yue (楼森岳) Generalized symmetries of an N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system 2015 Chin. Phys. B 24 050202

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Bluman G W and and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[3] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[4] Lou S Y 1990 Phys. Lett. A 151 133
[5] Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 41 8286
[6] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[7] Gao X N, Yang X D and Lou S Y 2012 Commun. Theor. Phys. 58 617
[8] Gao X N, Lou S Y and Tang X Y 2013 J. High Energy Phys. 05 029
[9] Sarin A 1997 Phys. Lett. B 395 218
[10] Sorin A S 1998 Phys. Atom. Nucl. 61 1768
[11] Alexander D P and Martin W 2007 Commun. Math. Phys. 275 685
[12] Nissimov S and Pacheva S 2002 J. Math. Phys. 43 2547
[13] Lou S Y 1993 J. Phys. A: Math. Gen. 26 4387
[14] Lou S Y 1993 Phys. Rev. Lett. 71 4099
[15] Lou S Y 1994 J. Phys. A: Math. Gen. 27 3235
[16] Wang J Y, Liang Z F and Tang X Y 2014 Phys. Scr. 89 025201
[17] Delisle L and Mosaddeghi M 2013 J. Phys. A: Math. Theor. 46 115203
[18] Boiti M, Leon J J P, Manna M and Pempinelli F 1986 Inverse Probl. 2 271
[19] Manin Y I and Radul A O 1985 Commun. Math. Phys. 98 65
[20] Ghosh S and Paul S K 1995 Phys. Lett. B 341 293
[21] Ghosh S and Sarma D 2001 Nuclear Phys. B 616 549
[22] Alvarez-Gaumé L, Itoyama H, Mañes J L and Zadra A 1992 Int. J. Mod. Phys. A 7 5337
[23] Alvarez-Gaumé L, Becker K, Becker M, Emparan R and Mañes J L 1993 Int. J. Mod. Phys. A 8 2297
[24] Oevel W and Popowicz Z 1991 Commun. Math. Phys. 139 441
[25] Mathieu P 1988 Phys. Lett. A 128 169
[26] Liu Q P 1995 Lett. Math. Phys. 35 115
[27] Liu Q P and Xie Y F 2004 Phys. Lett. A 325 139
[28] Carstea A S 2000 Nonlinearity 13 1645
[29] Carstea A S, Ramani A and Grammaticos B 2001 Nonlinearity 14 1419
[30] Wang J Y, Yu J and Lou S Y 2010 Commun. Theor. Phys. 53 999
[31] Wang J Y, Hu H W and Yu J 2011 J. Math. Phys. 52 103704
[32] Strominger A 1998 J. High Energy Phys. 02 009
[33] Avan J 1992 Phys. Lett. A 168 363
[34] Bakas I and Kiritsis E 1990 Nucl. Phys. B 343 185
[35] Hoppe J 1982 Quantum Theory of a Massless Relativistic Surface and a Two-dimensional Bound State Problem (Ph.D. Thesis) (MIT)
[36] Henneaux M and Rey S J 2010 J. High Energy Phys. 12 007
[1] Constructing (2+1)-dimensional N=1 supersymmetric integrable systems from the Hirota formalism in the superspace
Jian-Yong Wang(王建勇), Xiao-Yan Tang(唐晓艳), Zu-Feng Liang(梁祖峰). Chin. Phys. B, 2018, 27(4): 040203.
No Suggested Reading articles found!