Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108401    DOI: 10.1088/1674-1056/26/10/108401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors

Jun-Tao Ma(马俊涛)1,2, Mei-Guo Gao(高梅国)1, Bao-Feng Guo(郭宝锋)2, Jian Dong(董健)2, Di Xiong(熊娣)1, Qi Feng(冯祺)1
1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
2. Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang 050003, China
Abstract  The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for monitoring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant-and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofocus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method.
Keywords:  space target      ISAR imaging      MTRC correction      sparsity  
Received:  23 March 2017      Revised:  25 April 2017      Accepted manuscript online: 
PACS:  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  91.10.Sp (Satellite orbits)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61601496 and 61401024).
Corresponding Authors:  Jun-Tao Ma     E-mail:  tm0508@sina.com

Cite this article: 

Jun-Tao Ma(马俊涛), Mei-Guo Gao(高梅国), Bao-Feng Guo(郭宝锋), Jian Dong(董健), Di Xiong(熊娣), Qi Feng(冯祺) High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors 2017 Chin. Phys. B 26 108401

[1] Bai X, Zhou F, Wang Q, Xing M D and Bao Z 2013 IEEE Trans. Geosci. Remote Sens. 51 4144
[2] Wang F, Eibert T F and Jin Y Q 2015 IEEE Trans. Geosci. Remote Sens. 53 3432
[3] Bao Z, Xing M D and Wang T 2005 Radar Imaging Technology (Beijing:Publishing House of Electronics Industry) pp. 230-253
[4] Özdemir C 2012 Inverse synthetic aperture radar imaging with MATLAB algorithms (Canada:Wiley) pp. 121-168
[5] Wang J F and Kasilingam. D 2003 IEEE Trans. Aerosp. Electron. Syst. 39 351
[6] Zhu D Y, Wang L, Yu Y S, Tao Q N and Zhu Z D. 2009 IEEE Trans. Geosci. Remote Sens. Lett. 6 204
[7] Itoh T, Sueda H, Watanabe Y 1996 IEEE Trans. Aerosp. Electron. Syst. 32 1191
[8] Carrara W G, Goodman R S and Majewski R M 1995 Spotlight Synthetic Aperture Radar:Signal Processing and Algorithms (Boston:Artech House) pp. 423-424
[9] Wahl D E, Eichel P H, Ghiglia D C and Jakowatz C V 1994 IEEE Trans. Aerosp. Electron. Syst. 30 827
[10] Ye W, Yeo T S and Bao Z 1999 IEEE Trans. Geosci. Remote Sens. 37 2487
[11] Xing M, Wu R, Lan J and Bao Z 2004 IEEE Trans. Geosci. Remote Sens. Lett. 1 141
[12] Wang Y, Ling H, and Chen V C 1998 IEEE Trans. Aerosp. Electron. Syst. 34 670
[13] Du L and Su G 2005 IEEE Geosci. Remote Sens. Lett. 2 247
[14] Li W C, Wang X S and Wang G Y 2010 IEEE Trans. Aerosp. Electron. Syst. 46 2043
[15] Li Y, Wu R, Xing M and Bao Z 2008 IET Radar Sonar Navig. 2 395
[16] Wang Y and Jiang Y C 2011 IEEE Geosci. Remote Sens. Lett. 8 958
[17] Hang R, Wu Y, Jia X and Ye Wei 2014 IEEE Geosci. Remote Sens. Lett. 11 128
[18] Samadi S, Çetin M and Masnadi-Shirazi M A 2011 IET Radar, Sonar Navigat. 5 182
[19] Çetin M, Stojanovic I, önhon N ö, Varshney K R, Samadi Sadegh, Karl W C and Willsky A S 2014 IEEE Signal Processing Magazine 31 27
[20] Cao P, Luo X J, Zhang Y, Liu H and Chen M L 2016 Chin. Phys. B 25 040701
[21] Rao W, Li G, Wang X and Xia X G 2013 IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing 6 942
[22] Çetin M and Karl W C 2001 IEEE Trans. Image Processing 10 623
[23] Çetin M, Karl W C, and Willsky A S 2006 Opt. Eng. 45 017003
[24] Zhu X X and Bamler R 2010 IEEE Trans. Geosci. Remote Sensing 48 3839
[25] önhon N ö and ć C etin M 2011 IEEE Trans. Image Processing 21 2075
[26] Xu G, Xing M and Zhang L 2011 IEEE Geosci. Remote Sens. Lett. 8 1150
[27] Zhang L, Qiao Z J, Xing M D, Sheng J L, Guo R and Bao Z 2012 IEEE Trans. Antennas & Propagation 60 997
[28] Du X, Duan C and Hu W 2013 IEEE Trans. Geosci. Remote Sens. 51 1826
[29] Xu G, Xing M D, Xia X G, Chen Q Q, Zhang L and Bao Z 2015 IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 8 1
[30] Ovliver Montenbruck and Eberhard Gill 2001 Satellite Orbits:Models, Methods and Applications (New York:Springer) pp. 157-168
[31] Howard D Curitis, 2010 Orbital Mechanics for Engineering Students, 2nd edn. (Elsevier) pp. 72-85
[32] Guo B F, Wang J L, Gao M G, Shang C X and Fu X J 2015 Chin. Phys. B 24 048402
[1] Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity
Han-Ming Zhang(张瀚铭), Lin-Yuan Wang(王林元), Lei Li(李磊), Bin Yan(闫镔), Ai-Long Cai(蔡爱龙), Guo-En Hu(胡国恩). Chin. Phys. B, 2016, 25(7): 078701.
[2] Research on spatial-variant property of bistatic ISAR imaging plane of space target
Guo Bao-Feng (郭宝锋), Wang Jun-Ling (王俊岭), Gao Mei-Guo (高梅国), Shang Chao-Xuan (尚朝轩), Fu Xiong-Jun (傅雄军). Chin. Phys. B, 2015, 24(4): 048402.
No Suggested Reading articles found!