Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 086301    DOI: 10.1088/1674-1056/22/8/086301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vibrational properties of cagelike diamondoid nitrogen at high pressure

Wang Hui (王翚)
Department of Physics, Fudan University, Shanghai 200433, China
Abstract  Under high pressure, a cagelike diamondoid nitrogen structure was lately discovered by first-principles structure researches. This newly proposed structure is very unique and has not been observed in any other element. Using density-functional calculations, we study the pressure effect on its vibrational properties. The Born effective charges are calculated, and the resulting LO-TO splittings of certain infrared active modes are beyond 20 cm-1. We depict the Γ-point vibrational modes and find the breathing mode, rotational mode, and shearing mode. Frequencies of all the optical modes increase with pressure increasing. Moreover, the relation between the breathing mode frequency and the nitrogen cage diameter is discussed in detail. Our calculation results give a deeper insight into the vibrational properties of the cagelike diamondoid nitrogen.
Keywords:  first principle calculation      infrared and Raman spectra      nitrogen  
Received:  18 March 2013      Revised:  03 May 2013      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.66.Bi (Elemental solids)  
Corresponding Authors:  Wang Hui     E-mail:  nkxirainbow@gmail.com

Cite this article: 

Wang Hui (王翚) Vibrational properties of cagelike diamondoid nitrogen at high pressure 2013 Chin. Phys. B 22 086301

[1] McMahan A and LeSar R 1985 Phys. Rev. Lett. 54 1929
[2] Martin R and Needs R 1986 Phys. Rev. B 34 5082
[3] Mailhiot C, Yang L and McMahan A 1992 Phys. Rev. B 46 14419
[4] Barbee T 1993 Phys. Rev. B 48 9327
[5] Mitáš L and Martin R 1994 Phys. Rev. Lett. 72 2438
[6] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[7] Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K and Hemley R J 2004 J. Chem. Phys. 121 11296
[8] Mattson W, Sanchez-Portal D, Chiesa S and Martin R 2004 Phys. Rev. Lett. 93 125501
[9] Alemany M and Martins J 2003 Phys. Rev. B 68 024110
[10] Zahariev F, Hu A, Hooper J, Zhang F and Woo T 2005 Phys. Rev. B 72 214108
[11] Wang X, Wang Y, Miao M, Zhong X, Lü J, Cui T, Li J, Chen L, Pickard C J and Ma Y M 2012 Phys. Rev. Lett. 109 175502
[12] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[16] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[17] Lü Z L, You J H, Zhao Y Y and Wang H 2011 Commun. Theor. Phys. 55 513
[18] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
[19] Ghosez P, Michenaud J P and Gonze X 1998 Phys. Rev. B 58 6224
[20] Gonze X 1997 Phys. Rev. B 55 10355
[21] Glockler G 1943 Rev. Mod. Phys. 15 111
[22] Van Kranendonk J and Karl G 1968 Rev. Mod. Phys. 40 531
[23] Liang H N, Ma C L, Du F, Cui Q L and Zou G T 2013 Chin. Phys. B 22 016103
[24] Lin J J, Guo L W, Jia Y P, Chen L L, Lu W, Huang J and Chen X L 2013 Chin. Phys. B 22 016301
[25] Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G and Wang Z G 2012 Chin. Phys. B 21 047802
[26] Wang H, Zhu J, Wang Y F, Cao X, Feng M and Lan G X 2008 Physica B: Condens. Matter 403 4189
[27] Wang H, Cao X W, Feng M, Wang Y, Jin Q, Ding D and Lan G 2009 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 71 1932
[28] Wang H, You J, Wang L, Feng M and Wang Y F 2009 J. Raman. Spectrosc. 41 125
[29] Wang H, Wang Y F, Cao X W, Feng M and Lan G X 2009 J. Raman. Spectrosc. 40 1791
[30] Wang H, Wang L, Wang Y F, Cao X W, Feng M, Jin Q H, Ding D T and Lan G X 2009 J. Phys. Chem. Sol. 70 8
[31] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[32] Zhang Y Y, Du S X and Gao H J 2012 Chin. Phys. B 21 036801
[33] Snoke D, Raptis Y and Syassen K 1992 Phys. Rev. B 45 14419
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[3] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[4] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[5] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[6] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[7] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[8] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[9] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[10] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[11] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[12] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[13] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
[14] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[15] Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy
Jing-Jing Chen(陈晶晶), Jun Huang(黄俊), Xu-Jun Su(苏旭军), Mu-Tong Niu(牛牧童), Ke Xu(徐科). Chin. Phys. B, 2020, 29(7): 076802.
No Suggested Reading articles found!