CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Vibrational properties of cagelike diamondoid nitrogen at high pressure |
Wang Hui (王翚) |
Department of Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract Under high pressure, a cagelike diamondoid nitrogen structure was lately discovered by first-principles structure researches. This newly proposed structure is very unique and has not been observed in any other element. Using density-functional calculations, we study the pressure effect on its vibrational properties. The Born effective charges are calculated, and the resulting LO-TO splittings of certain infrared active modes are beyond 20 cm-1. We depict the Γ-point vibrational modes and find the breathing mode, rotational mode, and shearing mode. Frequencies of all the optical modes increase with pressure increasing. Moreover, the relation between the breathing mode frequency and the nitrogen cage diameter is discussed in detail. Our calculation results give a deeper insight into the vibrational properties of the cagelike diamondoid nitrogen.
|
Received: 18 March 2013
Revised: 03 May 2013
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
61.66.Bi
|
(Elemental solids)
|
|
Corresponding Authors:
Wang Hui
E-mail: nkxirainbow@gmail.com
|
Cite this article:
Wang Hui (王翚) Vibrational properties of cagelike diamondoid nitrogen at high pressure 2013 Chin. Phys. B 22 086301
|
[1] |
McMahan A and LeSar R 1985 Phys. Rev. Lett. 54 1929
|
[2] |
Martin R and Needs R 1986 Phys. Rev. B 34 5082
|
[3] |
Mailhiot C, Yang L and McMahan A 1992 Phys. Rev. B 46 14419
|
[4] |
Barbee T 1993 Phys. Rev. B 48 9327
|
[5] |
Mitáš L and Martin R 1994 Phys. Rev. Lett. 72 2438
|
[6] |
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
|
[7] |
Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K and Hemley R J 2004 J. Chem. Phys. 121 11296
|
[8] |
Mattson W, Sanchez-Portal D, Chiesa S and Martin R 2004 Phys. Rev. Lett. 93 125501
|
[9] |
Alemany M and Martins J 2003 Phys. Rev. B 68 024110
|
[10] |
Zahariev F, Hu A, Hooper J, Zhang F and Woo T 2005 Phys. Rev. B 72 214108
|
[11] |
Wang X, Wang Y, Miao M, Zhong X, Lü J, Cui T, Li J, Chen L, Pickard C J and Ma Y M 2012 Phys. Rev. Lett. 109 175502
|
[12] |
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
|
[13] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[14] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[15] |
Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
|
[16] |
Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
|
[17] |
Lü Z L, You J H, Zhao Y Y and Wang H 2011 Commun. Theor. Phys. 55 513
|
[18] |
Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
|
[19] |
Ghosez P, Michenaud J P and Gonze X 1998 Phys. Rev. B 58 6224
|
[20] |
Gonze X 1997 Phys. Rev. B 55 10355
|
[21] |
Glockler G 1943 Rev. Mod. Phys. 15 111
|
[22] |
Van Kranendonk J and Karl G 1968 Rev. Mod. Phys. 40 531
|
[23] |
Liang H N, Ma C L, Du F, Cui Q L and Zou G T 2013 Chin. Phys. B 22 016103
|
[24] |
Lin J J, Guo L W, Jia Y P, Chen L L, Lu W, Huang J and Chen X L 2013 Chin. Phys. B 22 016301
|
[25] |
Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G and Wang Z G 2012 Chin. Phys. B 21 047802
|
[26] |
Wang H, Zhu J, Wang Y F, Cao X, Feng M and Lan G X 2008 Physica B: Condens. Matter 403 4189
|
[27] |
Wang H, Cao X W, Feng M, Wang Y, Jin Q, Ding D and Lan G 2009 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 71 1932
|
[28] |
Wang H, You J, Wang L, Feng M and Wang Y F 2009 J. Raman. Spectrosc. 41 125
|
[29] |
Wang H, Wang Y F, Cao X W, Feng M and Lan G X 2009 J. Raman. Spectrosc. 40 1791
|
[30] |
Wang H, Wang L, Wang Y F, Cao X W, Feng M, Jin Q H, Ding D T and Lan G X 2009 J. Phys. Chem. Sol. 70 8
|
[31] |
Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
|
[32] |
Zhang Y Y, Du S X and Gao H J 2012 Chin. Phys. B 21 036801
|
[33] |
Snoke D, Raptis Y and Syassen K 1992 Phys. Rev. B 45 14419
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|