Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094501    DOI: 10.1088/1674-1056/23/9/094501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system

Liu Shuang (刘爽)a b, Zhao Shuang-Shuang (赵双双)a, Sun Bao-Ping (孙宝平)a, Zhang Wen-Ming (张文明)a b
a Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
b National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
Abstract  Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.
Keywords:  relative rotation      electromechanical coupling      Hopf bifurcation      chaos  
Received:  16 January 2014      Revised:  25 February 2014      Accepted manuscript online: 
PACS:  45.20.dc (Rotational dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61104040) and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090).
Corresponding Authors:  Zhang Wen-Ming     E-mail:  hudiezhaoshuang@163.com

Cite this article: 

Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明) Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system 2014 Chin. Phys. B 23 094501

[1] Carmeli M 1985 Found. Phys. 15 175
[2] Carmeli M 1986 Int. J. Theor. Phys. 25 89
[3] Luo S K 1996 J. Beijing Inst. Technol. 16 154 (in Chinese)
[4] Luo S K 1998 Appl. Math. Mech. 19 45
[5] Wang X Y and Wang M J 2012 Chin. Phys. B 21 010503
[7] Ma C and Wang X Y 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 721
[8] Zhang L S, Cai L and Feng C W 2010 Acta Electron. Sin. 38 1 (in Chinese)
[9] Wang X Y and Wang L L 2011 Chin. Phys. B 20 050509
[10] Wu G and Cai L 2010 Chin. J. Sci. Instrument 31 454 (in Chinese)
[11] Bao H M and Zhu Y S 2009 Acta Electron. Sin. 37 1222 (in Chinese)
[12] Wang X Y, Liang Q Y and Meng J 2008 Int. J. Mod. Phys. C 19 1389
[13] Wang X Y and Liang Q Y 2008 Commun. Nonlinear Sci. Numer. Simul. 13 913
[14] Chen J S, Zeng Y C, Chen S B and Li J B 2011 Chin. J. Sci. Instrument 32 1710 (in Chinese)
[15] Wang X Y, Luo C and Meng J 2009 Appl. Math. Comput. 207 63
[16] Wang X Y and Luo C 2006 Appl. Math. Comput. 183 30
[17] Luo C W, Wang C C and Wei J J 2009 Chaos Soliton. Fract. 39 1831
[18] Luo Z Z, Li Y F, Meng M and Sun Y 2011 Chin. J. Sci. Instrument 32 33 (in Chinese)
[19] Liu S, Liu B and Shi P M 2009 Acta Phys. Sin. 58 4383 (in Chinese)
[20] Liu S, Liu B, Zhang Y K and Wen Y 2010 Acta Phys. Sin. 59 38 (in Chinese)
[21] Shi P M, Li J Z, Liu B and Han D Y 2011 Acta Phys. Sin. 60 094501 (in Chinese)
[22] Liu H R, Zhu Z L and Shi P M 2010 Acta Phys. Sin. 59 6770 (in Chinese)
[23] Meng Z, Fu L Y and Song M H 2013 Acta Phys. Sin. 62 054501 (in Chinese)
[24] Li H B, Wang B H, Zhang Z Q, Liu S and Li Y S 2012 Acta Phys. Sin. 61 094501 (in Chinese)
[25] Shi P M, Liu B and Hou D X 2009 Chin. J. Mechan. Eng. 22 132
[26] Shi P M, Han D Y and Liu B 2010 Chin. Phys. B 19 090306
[27] Liu S, Liu H R, Wen Y and Liu B 2010 Acta Phys. Sin. 59 5223 (in Chinese)
[28] Shi P M, Liu B and Jiang J S 2009 Acta Phys. Sin. 58 2147 (in Chinese)
[29] Meng L Q, Wu H L, Wang J X and Lei M J 2009 Journal of Central South University: Sci. Technol. 40 1228 (in Chinese)
[30] Meng L Q, Wang J X, Wu H L and Lei M J 2009 Journal of South China University of Technology: Natural Science Edition 37 25 (in Chinese)
[31] Qi G Y, Chen G R and Zhang Y H 2008 Chaos Soliton. Fract. 37 409
[32] Zhou T and Tang Y 2004 Int. J. Bifurc. Chaos 14 3167
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[8] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[12] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[13] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
No Suggested Reading articles found!