Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078401    DOI: 10.1088/1674-1056/23/7/078401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Hybrid phase-locked loop with fast locking time and low spur in a 0.18-μm CMOS process

Zhu Si-Heng (朱思衡)a, Si Li-Ming (司黎明)a, Guo Chao (郭超)a, Shi Jun-Yu (史君宇)a, Zhu Wei-Ren (朱卫仁)b
a Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Department of Electronic Engineering, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
b Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
Abstract  We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4× 0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.
Keywords:  phase-locked loop (PLL)      fast locking time      low spur      complementary metal oxide semiconductor (CMOS)  
Received:  29 October 2013      Revised:  30 December 2013      Accepted manuscript online: 
PACS:  84.40.Lj (Microwave integrated electronics)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  84.40.Dc (Microwave circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61307128), the National Basic Research Program of China (Grant No. 2010CB327505), the Specialized Research Found for the Doctoral Program of Higher Education of China (Grant No. 20131101120027), and the Basic Research Foundation of Beijing Institute of Technology of China (Grant No. 20120542015).
Corresponding Authors:  Si Li-Ming     E-mail:  lms@bit.edu.cn
About author:  84.40.Lj; 85.40.-e; 84.40.Dc

Cite this article: 

Zhu Si-Heng (朱思衡), Si Li-Ming (司黎明), Guo Chao (郭超), Shi Jun-Yu (史君宇), Zhu Wei-Ren (朱卫仁) Hybrid phase-locked loop with fast locking time and low spur in a 0.18-μm CMOS process 2014 Chin. Phys. B 23 078401

[1] Shu K and Sanchez-Sinencio E 2005 CMOS PLL Synthesizers-Analysis and Design (New York: Springer)
[2] Huang J F, Liu R Y, Lai W C, Shi C W and Hsu C M 2012 Chin. Phys. B 21 084210
[3] Huang J F, Shih C W and Liu R Y 2011 Microw. Opt. Technol. Lett. 53 2931
[4] Huang J F, Hsu C M, Chen K L and Liu R Y 2013 Microw. Opt. Technol. Lett. 55 200
[5] Gao X, Klumperink E A M, Socci G, Bohsali M and Nauta B 2010 IEEE J. Solid-State Circuit. 45 1809
[6] Koo Y, Huh H, Cho Y, Lee J, Park J, Lee K, Jeong D K and Kim W 2002 IEEE J. Solid-State Circuit. 37 536
[7] Moon Y, Park Y S, Kim N, Ahn G, Shin H J and Jeong D K 2004 IEEE J. Solid-State Circuit. 39 795
[8] Rhee W, Ainspan H, Friedman D J, Rasmus T, Garvin S and Cranford C 2007 IEEE Asian Solid-State Circuits Conference, November 12-14, 2007 Jeju, South Korea, p. 63
[9] Vaucher C 2000 IEEE J. Solid-State Circuit. 35 490
[10] Lee J and Kim B 2000 IEEE J. Solid-State Circuit. 35 1137
[11] Yang C Y and Liu S I 2000 IEEE J. Solid-State Circuit. 35 1445
[12] Liao T W, Chen C M, Su J R and Hung C C 2012 IEEE Trans. Circuits Syst. I-Regul. Pap. 59 2815
[13] Huang J F, Hsu C M and Chen K L 2012 Microw. Opt. Technol. Lett. 54 2295
[14] Sun Y F, Yu X Y, Rhee W, Wang D and Wang Z H 2010 IEEE Microw. Wirel. Compon. Lett. 20 462
[15] Kuo C Y, Chang J Y and Liu S I 2006 IEEE Trans. Circuits Syst. I-Regul. Pap. 53 526
[16] Levantino S, Samori C, Bonfanti A, Giekink S L J, Lacaita A L and Boccuzzi V 2002 IEEE J. Solid-State Circuit. 37 1003
[17] Minsheng W, Mayhugh T L, Embabi S H K and Sanchez-Sinencio E 1999 IEEE J. Solid-State Circuit. 34 148
[1] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[2] Performance enhancement of CMOS terahertz detector by drain current
Xingxing Zhang(张行行), Xiaoli Ji(纪小丽), Yiming Liao(廖轶明), Jingyu Peng(彭静宇), Chenxin Zhu(朱晨昕), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(9): 098401.
[3] Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦). Chin. Phys. B, 2016, 25(11): 118503.
[4] HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial
Ran Jiang(蒋然), Zheng-Ran Wu(吴正冉), Zu-Yin Han(韩祖银), Hyung-Suk Jung. Chin. Phys. B, 2016, 25(10): 106803.
[5] Design and manufacture of planar GaAs Gunn diode for millimeter wave application
Huang Jie(黄杰), Yang Hao(杨浩), Tian Chao(田超), Dong Jun-Rong(董军荣), Zhang Hai-Ying(张海英), and Guo Tian-Yi(郭天义). Chin. Phys. B, 2010, 19(12): 127203.
[6] A CMOS-compatible silicon substrate optimization technique and its application in radio frequency crosstalk isolation
Li Chen(李琛), Liao Huai-Lin (廖怀林),Huang Ru(黄如), and Wang Yang-Yuan (王阳元) . Chin. Phys. B, 2008, 17(7): 2730-2738.
[7] MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga 0.95N/GaN HEMTs
Cheng Zhi-Qun(程知群), Cai Yong(蔡勇), Liu Jie(刘杰), Zhou Yu-Gang(周玉刚), Lau Kei May, and Chen J. Kevin. Chin. Phys. B, 2007, 16(11): 3494-3497.
[8] High density Al2O3/TaN-based metal--insulator-- metal capacitors in application to radio frequency integrated circuits
Ding Shi-Jin(丁士进), Huang Yu-Jian(黄宇健), Huang Yue(黄玥), Pan Shao-Hui(潘少辉), Zhang Wei(张卫), and Wang Li-Kang(汪礼康). Chin. Phys. B, 2007, 16(9): 2803-2808.
[9] Low-parasitic ESD protection strategy for RF ICs in 0.35μm CMOS process
Wang Yuan(王源), Jia Song(贾嵩), Chen Zhong-Jian(陈中建), and Ji Li-Jiu(吉利久). Chin. Phys. B, 2006, 15(10): 2297-2305.
No Suggested Reading articles found!