Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 065205    DOI: 10.1088/1674-1056/23/6/065205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Observation and analysis of halo current in EAST

Chen Da-Long (陈大龙)a, Shen Biao (沈飙)a, Qian Jin-Ping (钱金平)a, Sun You-Wen (孙有文)a, Liu Guang-Jun (刘广君)a, Shi Tong-Hui (石同辉)a, Zhuang Hui-Dong (庄会东)a, Xiao Bing-Jia (肖炳甲)a b
a Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
b School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230031, China
Abstract  Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J×B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF×Ih/IP0 is 0.65, furthermore Ih/ Ip0 and TPF×Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.
Keywords:  EAST      halo current      toroidal peaking factor      mass gas injection  
Received:  15 October 2013      Revised:  11 December 2013      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.70.Ds (Electric and magnetic measurements)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2014GB103000 and 2013GB102000) and the National Natural Science Foundation of China (Grant No. 11205199).
Corresponding Authors:  Qian Jin-Ping     E-mail:  jpqian@ipp.ac.cn

Cite this article: 

Chen Da-Long (陈大龙), Shen Biao (沈飙), Qian Jin-Ping (钱金平), Sun You-Wen (孙有文), Liu Guang-Jun (刘广君), Shi Tong-Hui (石同辉), Zhuang Hui-Dong (庄会东), Xiao Bing-Jia (肖炳甲) Observation and analysis of halo current in EAST 2014 Chin. Phys. B 23 065205

[1] Granetz R S, Hutuhinson I H and Sorci J 1996 Nucl. Fusion 36 545
[2] Mirnov S, Wesley J, Fujisawa N, Gribov Yu, Gruber O, Hender T, Ivanov N, Jardin S, Lister J, Perkins F, Rosenbluth M, Sautho N, Taylor T, Tokuda S, Yamazaki K, Yoshino R, Bondeson A, Conner J, Fredrickson E, Gates D, Granetz R, La Haye R, Neuhauser J and Porcelli F 1999 ITER Physics Expert Group on Disruption, Plasma Control, MHD and ITER Physics Basis Editors, Nucl. Fusion 39 2336
[3] Neyatani Y, Yoshino R, Nakamura Y and Sakurai S 1999 Nucl. Fusion 39 559
[4] Granetz R S and Hutchinson I H 1997 Proceedings of the 16th IAEA Fusion Energy Conference, 1996, October, Montreal, Canada (Vienna: The International Atomic Energy Agency)
[5] Riccardo V, Hender T C and Lomas P J 2004 Plasma Phys. Control Fusion 46 925
[6] Gerhardt S P 2012 Nucl. Fusion 52 063005
[7] Qian J P, Wan B N and Shen B 2009 Chin. Phys. B 18 1172
[8] Chen D L and Shen B 2013 Nucl. Fusion Plasma Phys. 33 66 (in Chinese)
[9] Qian J P, Wan B N and Shen B 2009 Chin. Phys. B 18 2432
[10] Liu G J, Wan B N, Sun Y W, Xiao B J and Wang Y 2013 Rev. Sci. Instrum. 84 073502
[11] Xu X Y, Wang J, Wan B N and Gao X 2009 Chin. Phys. B 18 1153
[12] Humphreys D A 1999 Physics of Plasmas 6 2742
[13] Pautasso G and Giannone L 2011 Nucl. Fusion 51 043010
[14] Wu B, Wang J F and Li J B 2011 Fusion Eng. Des. 86 947
[15] Whyte D G, Jernigan T C and Humphreys D A 2002 Phys. Rev. Lett. 89 055001
[16] Finken K H, Mank G and Kramer-Flecken A 2001 Nucl. Fusion 41 1651
[17] Zhuang H D and Zhang X D 2013 Plasma Science and Technology 15 746
[1] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[5] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[8] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[9] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[10] Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak
Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友). Chin. Phys. B, 2020, 29(6): 065206.
[11] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[12] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[13] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[14] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[15] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
No Suggested Reading articles found!