Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060502    DOI: 10.1088/1674-1056/23/6/060502
GENERAL Prev   Next  

Tracking problem under a time-varying topology

Dong Li-Jing (董立静)a, Chai Sen-Chun (柴森春)a, Zhang Bai-Hai (张百海)a, Nguang Sing-Kiong (阮盛强)b
a School of Automation, Beijing Institute of Technology, Beijing 100081, China;
b The Department of Electrical and Computer Engineering, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
Abstract  This paper studies the multi-agent tracking problem of a third-order maneuvering target under uncertain communication environments. Each tracking agent is assumed to be a third-order system and can only use its own and neighbors' position, velocity, and acceleration information to design its control input. In this work, the uncertain communication environments are modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sufficient conditions for the existence of a tracking strategy have been expressed in terms of the solvability of linear matrix inequalities. Finally, a numerical example is employed to demonstrate the effectiveness of the proposed tracking strategy.
Keywords:  third-order multi-agent systems      tracking strategy      time-varying topology  
Received:  17 October 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  02.30.Yy (Control theory)  
  07.05.Dz (Control systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61104086), the Scientific Research, Postgraduate Training Joint-Build Project (Grant No. 20120639002), and the China Scholarship Council (Grant No. 201306030027).
Corresponding Authors:  Chai Sen-Chun     E-mail:  chaisc97@bit.edu.cn

Cite this article: 

Dong Li-Jing (董立静), Chai Sen-Chun (柴森春), Zhang Bai-Hai (张百海), Nguang Sing-Kiong (阮盛强) Tracking problem under a time-varying topology 2014 Chin. Phys. B 23 060502

[1] Ji L H and Liao X F 2013 Chin. Phys. B 22 040203
[2] Xie M D and Wang S K 2012 J. Math. Anal. Appl. 387 8
[3] Lu X Q, Austin F and Chen S H 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1382
[4] Yu W W, Chen G R, Cao M, and Kurths J 2010 IEEE Trans. Syst. Man and Cybernetics-Part B: Cybernetics 40 881
[5] Zhang W G, Liu J Z, Zeng D L and Hu Y 2013 Chin. Phys. B 22 050511
[6] Hu G Q 2012 Systems and Control Letters 61 134
[7] Wen G H, Duan Z S, Yu W W and Chen G R 2012 Int. J. Robust Nonlinear Control 22 170
[8] Qin J H, Gao H J and Zheng W X 2011 Systems and Control Letters 60 390
[9] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[10] Xie G M, Liu H Y and Wang L 2009 American Control Conference, June 10-12, 2009, St. Louis, Missouri, USA, p. 4525
[11] Park M J, Kwon O M, Park J H, Lee S M and Cha E J 2012 Chin. Phys. B 21 110508
[12] Cui Y and Jia Y 2012 IET Control Theory Appl. 6 1933
[13] Ren W, Moore K and Chen Y 2006 IEEE International Conference on Networking, Sensing and Control, April 23-25, 2006, Ft. Lauderdale, FL, p. 457
[14] Cui R, Ren B and Ge S S 2012 IET Control Theory Appl. 6 603
[15] Zhang H W and Lewis F L 2012 Automatica 48 1432
[16] He W and Cao J 2011 IET Control Theory Appl. 5 231
[17] Jiang F and Wang L 2010 Int. J. Control 85 404
[18] Zhang W, Zeng D and Qu S 2010 IET Control Theory Appl. 4 2219
[19] Wen G H, Duan Z S, Yu W W, Cao J D and Chen G R 2013 Systems and Control Letters 62 1151
[20] Kima H, Shima H, Back J and Seo J H 2013 Automatica 49 267
[21] Dong L J, Chai S C and Zhang B H 2012 UKACC International Conference on Control, September 3-5, 2012, Cardiff, UK, p. 1052
[22] Dong L J, Chai S C and Zhang B H 2013 Journal of Beijing Institute of Technology, accepted
[23] Dong L J, Chai S C and Zhang B H 2014 Chin. Phys. B 23 010508
[24] Boyd S, El Ghaou L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (SIAM: Philadelphia)
[25] Linz S J and Sprott J C 1999 Phys. Lett. A 259 240
[1] Tracking of a third-order maneuvering target under an arbitrary topology
Dong Li-Jing (董立静), Chai Sen-Chun (柴森春), Zhang Bai-Hai (张百海). Chin. Phys. B, 2014, 23(1): 010508.
No Suggested Reading articles found!