Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060201    DOI: 10.1088/1674-1056/23/6/060201
GENERAL Prev   Next  

A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures

Zhai Yun-Yun (翟云云)a, Geng Xian-Guo (耿献国)a, He Guo-Liang (何国亮)b
a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
b School of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract  With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3×3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy.
Keywords:  spectral problem      nonlinear evolution equations      bi-Hamiltonian structure      conservation laws  
Received:  11 November 2013      Revised:  10 December 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11331008 and 11171312).
Corresponding Authors:  Zhai Yun-Yun     E-mail:  zhai1226@163.com

Cite this article: 

Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮) A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures 2014 Chin. Phys. B 23 060201

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[2] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Studies Appl. Math. 53 249
[3] Dubrovin B A 1981 Russian Math. Surveys 36 11
[4] Gesztesy F and Holden H 2003 Soliton Equations and Their Algebro-Geometric Solutions (Cambridge: Cambridge University Press)
[5] Belokolos E D, Bobenko A I, Enolskii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin: Springer)
[6] Geng X G, Wu L H and He G L 2013 J. Nonlinear Sci. 23 527
[7] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[8] Levi D and Ragnisco O 1988 Inverse Problems 4 815
[9] Geng X G and Lü Y Y 2012 Nonlinear Dyn. 69 1621
[10] Hu H C, Lou S Y and Liu Q P 2003 Chin. Phys. Lett. 20 1413
[11] Zhu J Y and Geng X G 2013 Chin. Phys. Lett. 30 080204
[12] Su T, Dai H H and Geng X G 2013 Chin. Phys. Lett. 30 060201
[13] Qu C Z, Yao R X and Li Z B 2004 Chin. Phys. Lett. 21 2077
[14] Lenells J 2012 Physica D 241 857
[15] Geng X G and Xue B 2011 Adv. Math. 226 827
[16] Lundmark H and Szmigielski J 2003 Inverse Problems 19 1241
[17] He G L and Geng X G 2012 Chin. Phys. B 21 070205
[18] He G L, Zhai Y Y and Geng X G 2013 J. Math. Phys. 54 083509
[19] Huang D J, Zhou S G and Yang Q M 2011 Chin. Phys. B 20 070202
[20] Yan Z Y and Zhang H Q 2001 Acta Phys. Sin. 50 1232 (in Chinese)
[21] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[3] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[4] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[5] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[6] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[7] The Wronskian technique for nonlinear evolution equations
Jian-Jun Cheng(成建军) and Hong-Qing Zhang(张鸿庆). Chin. Phys. B, 2016, 25(1): 010506.
[8] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[9] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[10] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[11] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[12] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[13] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[14] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[15] A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation
Ghulam Shabbir, Amjad Ali, and Suhail Khan. Chin. Phys. B, 2011, 20(7): 070401.
No Suggested Reading articles found!