Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 059201    DOI: 10.1088/1674-1056/23/5/059201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Improved method for analyzing quasi-optical launchers

Wu Ze-Wei (吴泽威), Li Hao (李浩), Xu Jian-Hua (徐建华), Li Tian-Ming (李天明), Li Jia-Yin (李家胤)
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An improved method for analyzing the radiation characteristic of the quasi-optical launcher is presented. The launcher is decomposed into an open-ended waveguide and a helical cut according to the proposed method. The radiation from the open-ended waveguide is obtained by using the Stratton-Chu formulation. The helical cut's radiation is calculated based on its current distribution, gained by several iterative computations, which helps to improve the calculation accuracy since the diffraction effect introduced by the helical cut is considered during the calculation. The proposed method is used to study different launches, and the results are compared with the existing results. Good agreement is achieved between the results obtained from our proposed method and the reported results. The present results provide an alternative for analysis and synthesis of the optical-mode converter.
Keywords:  gyrotron      quasi-optical launcher      Stratton-Chu formulation  
Received:  26 August 2013      Revised:  10 October 2013      Accepted manuscript online: 
PACS:  92.60.Ta (Electromagnetic wave propagation)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
Corresponding Authors:  Wu Ze-Wei     E-mail:  wzw.198704@163.com
About author:  92.60.Ta; 41.20.Jb; 42.25.Fx

Cite this article: 

Wu Ze-Wei (吴泽威), Li Hao (李浩), Xu Jian-Hua (徐建华), Li Tian-Ming (李天明), Li Jia-Yin (李家胤) Improved method for analyzing quasi-optical launchers 2014 Chin. Phys. B 23 059201

[1] Thumm M 2011 IEEE Trans. Plasma Sci. 39 971
[2] Bratman V L, Glyavin M Y, Kalynov Y K, Litvak A G, Luchinin A G, Savilov A V and Zapevalov E 2011 J. Infrared Millim. Terahertz Waves 32 371
[3] Nitin K, Udaybir S, Singh T P and Sinha A K 2011 J. Fusion Energy 30 257
[4] Schlaich A and Thumm M 2010 IEEE Trans. Plasma Sci. 38 1141
[5] Wang B, Du C H, Liu P K, Geng Z H and Xu S X 2010 Acta Phys. Sin. 59 2512 (in Chinese)
[6] Hirata Y, MitsunakaY, Hayashi K, Itoh Y, Sakamoto K and Imai T 2003 IEEE Trans. Plasma Sci. 31 142
[7] Liao S L and Vernon R J 2007 J. Electromagnetic Waves Appl. 21 425
[8] Jin J, Thumm M, Piosczyk B and Rzesnicki T 2006 IEEE Trans. Microw. Theory Tech. 54 1139
[9] Vlasov S N, Zagryadskaya L I and Petelin M I 1975 Radio Eng. Electron. Phys. 21 14
[10] Bogdashov A A and Denisov G G 2004 Radiophys. Quantum Electron. 47 283
[11] Thumm M, Yang X, Arnold A, Dammertz G, Michel G, Pretterebner J and Wagner D 2005 IEEE Trans. Electron Devices 52 818
[12] Choi E M, Shapiro M A, Sirigiri J R and Temkin R J 2009 J. Infrared Millim. Terahertz Waves 30 8
[13] Chirkov A V, Denisov G G, Kulygin M L, Malygin V I, Malygin S A, Pavel'ev A B and Soluyanova E A 2006 Radiophys. Quantum Electron. 49 344
[14] Jin J, Thumm M, Piosczyk B, Kern S, Flamm J and Rzesnicki T 2009 IEEE Trans. Microw. Theory Tech. 57 1661
[15] Flamm J, Jin J, and Thumm M 2011 J. Infrared Millim. Terahertz Waves 32 887
[16] Rock B Y and Vernon R J 2012 IEEE Trans. Plasma Sci. 40 1502
[17] Jeffrey M N and Rainer B 2002 IEEE Trans. Plasma Sci. 30 794
[18] Liu J W, Zhao Q and Li H F 2011 Acta Phys. Sin. 60 104201 (in Chinese)
[19] Wang B, Liu P K and Geng Z H 2010 J. Infrared Millim Waves 29 109 (in Chinese)
[20] Sabchevski S, Zhelyazkov I, Benova E, Atanassov V, Dankov P, Thumm M, Arnold A, Jin J and Rzesnicki T 2006 J. Phys.: Conf. Series 44 102
[21] Gashturi A P, Chirkov A V, Denisov G G and Paveliev A B 2013 J. Infrared Millim. Terahertz Waves 34 62
[22] Ruogui Y 2008 Advanced Electromagnetic Theory (Beijing: Higher Education Press)
[1] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[2] A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2016, 25(2): 029401.
[3] Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥), Qiao Hai-Liang (乔海亮), Guo Wei-Jie (郭伟杰), Zhang Dian-Hui (张殿辉). Chin. Phys. B, 2014, 23(6): 068402.
[4] Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥). Chin. Phys. B, 2014, 23(10): 108401.
[5] Periodicity-suppressing effect of periodic lossy-dielectric-loaded cylindrical waveguide
Du Chao-Hai(杜朝海), Liu Pu-Kun(刘濮鲲), and Xue Qian-Zhong(薛谦忠). Chin. Phys. B, 2010, 19(4): 048703.
No Suggested Reading articles found!