Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044216    DOI: 10.1088/1674-1056/23/4/044216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Magneto–optical effect of TEB30A liquid crystal doped with thulium oxides

Liu Gui-Xiang (刘桂香), Jin Xiang (金香)
Baotou Teachers College, Inner Mongolia University of Science and Technology, Baotou 014030, China
Abstract  The influences of an external magnetic field on the optical properties of the TEB30A nematic liquid crystal doped with thulium oxides (Gd2O3, Dy2O3, Nd2O3, Y2O3, and Sm2O3) are studied. It is shown that a magnetic field applied parallelly to the sample cell surface leads to the rotational orientation of mesogenes. All samples except for the sample doped with Sm2O3 nanoparticles undergo structural deformations. The behavior of the TEB30A/Sm2O3 differs from those of the TEB30A liquid crystal doped with other four nanoparticles. The presence of Sm2O3 nanoparticles in the TEB30A liquid crystal does not cause the structural deformation of the liquid crystal matrix. At the same time, the anchoring type of the liquid crystal molecules on the nanoparticle surface is different. The director n is parallel to the magnetic moment μ in the TEB30A/Sm2O3, and inclined to the magnetic moment μ in the TEB30A/Nd2O3, and perpendicular to the magnetic moment μ in each of TEB30A/Gd2O3, TEB30A/Dy2O3, and TEB30A/Y2O3. Besides, the dependence of the structural deformation on the critical magnetic field for the TEB30A is obtained.
Keywords:  magnetic field      TEB30A nematic liquid crystal      thulium oxides  
Received:  08 November 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50862007), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 20080404MS0114), and the Inner Mongolia Autonomous Region Scientific Research Fund, China (Grant No. NJZY12203).
Corresponding Authors:  Liu Gui-Xiang     E-mail:  gxliuemail@126.com
About author:  42.70.DF

Cite this article: 

Liu Gui-Xiang (刘桂香), Jin Xiang (金香) Magneto–optical effect of TEB30A liquid crystal doped with thulium oxides 2014 Chin. Phys. B 23 044216

[1] Kam N W S, O'Connell M and Wisdom J A 2005 Proc. Natl. Acad. Sci. USA 102 11600-5
[2] Bradley K, Gabriel J P and Gruner G 2003 Nano Lett. 3 1353
[3] Kuang Z, Kim S N and Crookes-Goodson W J 2010 Nano. 4 452
[4] Brochard F and de Gennes P G 1970 J. Phys. 31 691
[5] Kopčanský P 2008 Phys. Rev. E 78 011702
[6] Kopčanský P, Koneracká M and Timko M 2006 Phys. Status Solidi B 243 317
[7] Liu Y J, Xuan L and Hu L F 2005 Acta Opt. Sin. 25 1682 (in Chinese)
[8] Ren G J, Yao J Q and Wang P 2007 Acta Phys. Sin. 56 994 (in Chinese)
[9] Petriashvili G, Matranga M A and De Santo M P 2009 Opt. Express 17 4553
[10] Zyryanov V Y, Myslivets S A and Gunyakov V A 2010 Opt. Express 18 1283
[11] Podoliak N, Buchnev O, D'Alessandro G, Kaczmarek M and Sluckin T J 2010 Phys. Rev. E 82 030701
[12] Challa P K, Curtiss O, Williams J C, Twieg R, Toth J, McGill S, Jákli A, Gleeson J T and Sprunt S N 2012 Phys. Rev. E 86 011708
[13] Zhou S, Nastishin Y A and Omelchenko M M 2012 Phys. Rev. Lett. 109 037801
[14] Francescangeli O, Vita F and Fauth F 2011 Phys. Rev. Lett. 107 207801
[15] Mitróová Z, Tomašovicvá N L and Timko M 2011 New J. Chem. 35 1260
[16] Zakhlevnykh A N and Sosnin P A 1995 J. Magn. Magn. Mater. 146 103
[17] Liu G H 2005 Thulium Materials and Application Technology (Beijing: Chemical Industry Press) pp. 20-35 (in Chinese)
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!